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Boolean Specifications
A (Boolean) specification is given by a synchronous
deterministic automaton.

Example.

( a
c )

(
b
d

)
( a

d )

( a
d )

(
b
d

)

An implementation is given by a synchronous sequential
transducer.

Example.

a/c

b/d

a/d

b/d Which one is better?
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Quality in Synthesis

Spec Synthesis

Impl1

Impl2

Impl3

A quality measure is a function Q : (Σ× Γ)∗ → Q.

Spec
⊗

Quality
Synthesis

Impl1

Impl2

Impl3

low quality

high quality

high quality
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How to Define High Quality?
I All executions have a lower bounded quality:

∀i1o1i2o2 · · · ∈ [Impl] : Q
(

i1 i2 ···
o1 o2 ···

)
≥ c

I All executions are quality optimal:

∀i1o1i2o2 · · · ∈ [Impl] : Q
(

i1 i2 ···
o1 o2 ···

)
= supo′

1o′
2··· Q

(
i1 i2 ···
o′

1 o′
2 ···

)

I All executions are almost quality optimal:

∀i1o1i2o2 · · · ∈ [Impl] : supo′
1o′

2··· Q
(

i1 i2 ···
o′

1 o′
2 ···

)
−Q

(
i1 i2 ···
o1 o2 ···

)
≤ c
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Weighted Specifications (:= Boolean Spec ⊗ Quality)

A weighted specification is a function val : (Σ× Γ)∗ → Q∪−∞
given by a synchronous deterministic weighted automaton.

Example.

( a
c )| −1

(
b
d

)
| 6 ( a

d )| 1

( a
d )| 1

(
b
d

)
| 2

The value val of a pair depends on the used payoff function.

Example. Sum(
(

a a b
c d d

)
) = −1 + 1 + 2 = 2, Sum(aab⊗ cdd) = 2

The specification domain is {u | val(u⊗ v) ∈ Q}. An input is
valid if it is from the domain.

Example. Specification domain = a∗b
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Threshold Synthesis

The threshold synthesis problem asks, given c ∈ Q, and
. ∈ {>,≥}, that the implem. f satisfies for all valid inputs u:

val(u⊗ f(u)) . c

Example. Sum-specification and Implementation

( a
c )| −1

(
b
d

)
| 6 ( a

d )| 1

( a
d )| 1

(
b
d

)
| 2

a/d

b/d

Implementation ensures value of at least 3 for all pairs.
Sum(b⊗ d) = 6, Sum(aib⊗ di+1) = i · 1 + 2

Note: Implementation can do anything on invalid inputs.
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Threshold Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
threshold

NP ∩ coNP NP ∩ coNP NP

non-strict
threshold

NP ∩ coNP NP ∩ coNP NP ∩ coNP

How to solve? See it as a game problem.

We introduce a new type of game.

Critical prefix games
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Critical Prefix Games
Tailored to handle
I finite inputs
I partial specification domains

A critical prefix game is an infinite-duration two-player
turn-based weighted game with critical vertices.
I When a play is in a critical vertex, quantitative constraints

on the prefix are checked,
I if fulfilled, the play continues, otherwise Adam wins.

I Nothing checked for non-critical vertices.
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Critical Prefix Games and Threshold Synthesis
Threshold synthesis reduces to critical prefix games with
threshold conditions.

These games are decidable for sum, average, and
discounted-sum payoffs.
I Sum and average critical prefix games reduce to

mean-payoff games.
I Discounted-sum critical prefix games reduce to

discounted-sum games.
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Best-value Synthesis

The best-value synthesis problem asks that the
implementation f satisfies for all valid inputs u:

val(u⊗ f(u)) = bestVal(u) := supv val(u⊗ v),
that is, the maximal value achievable for input u.

Example. Sum-specification

( a
c )| −1

(
b
d

)
| 6 ( a

d )| 1

( a
d )| 1

(
b
d

)
| 2

bestSum(b) = 6
bestSum(ab) = 5

bestSum(aab) = 4
bestSum(aaab) = 5

bestSum(aaaab) = 6
No best-value implementation exists.
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Best-value Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
best-value Ptime [AKL10] Ptime [AKL10] NP ∩ coNP

Proof Techniques
I Sum: reduces to determinization by pruning of

Sum-automata
I Avg: reduces to Sum
I Dsum: reduces to a discounted-sum game
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Approximate Synthesis

The approximate synthesis problem asks, given c ∈ Q, and
/ ∈ {<,≤}, that the implem. f satisfies for all valid inputs u:

bestVal(u)− val(u⊗ f(u)) / c

Example. Sum-specification and Implementation

( a
c )| −1

(
b
d

)
| 6 ( a

d )| 1

( a
d )| 1

(
b
d

)
| 2 b/d a/c

a/d

b/d

Implementation ensures value of at most 2 less the best value.
Sum(b⊗ d) = 6 bestSum(b) = 6
Sum(ab⊗ cd) = 5 bestSum(ab) = 5
Sum(aib⊗ cid) = i bestSum(aib) = i + 2, for i ≥ 2
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Approximate Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

NEXPtime for
discount 1/n

non-strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

EXPtime for
discount 1/n

Proof Techniques
I Sum: reduces to regret determinization of Sum-automata
I Dsum: open in general, for integer discounts reduces to

discounted-sum games
I Avg: best-value synthesis reduces to Sum, no longer the

case for approximate synthesis
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Approximate Synthesis with Average Payoff
bestAvg(u)− Avg(u⊗ v) / c ⇔ bestSum(u)

n − Sum(u⊗v)
n / c

⇔ bestSum(u)− Sum(u⊗ v) / c · n

bestAvg(u)− Avg(u⊗ v) = 0 ⇔ bestSum(u)− Sum(u⊗ v) = 0

Example. Specification and Implementation

( a
c )| −1

(
b
d

)
| 6 ( a

d )| 1

( a
d )| 1

(
b
d

)
| 2 b/d a/c

a/d

b/d

Sum(aib⊗ cid) = i bestSum(aib) = i + 2, for i ≥ 2
Avg(aib⊗ cid) = i

2i+2 bestAvg(aib) = i+2
2i+2 , for i ≥ 2

Reduces to (a special type of) critical prefix games with
imperfect information which reduce to imperfect information
games with fixed initial credit.
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Results

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
threshold

NP ∩ coNP NP ∩ coNP NP

non-strict
threshold

NP ∩ coNP NP ∩ coNP NP ∩ coNP

best-value Ptime
[AKL10]

Ptime [AKL10] NP ∩ coNP

strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

NEXPtime for
discount 1/n

non-strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

EXPtime for
discount 1/n
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