
Synthesis from Weighted Specifications with
Partial Domains over Finite Words

Sarah Winter
joint work with Emmanuel Filiot and Christof Löding

Université libre de Bruxelles, Belgium

December, 2020
FSTTCS Conference

Synthesis

Specification Implementation
synthesize

one input is in relation
with several outputs

selects unique output
for each input

Spec Impl· · · 101011
010100 · · ·

101101 · · ·
· · · 101011

010100 · · ·

101101 · · ·

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 2 of 16

Boolean Specifications
A (Boolean) specification is given by a synchronous
deterministic automaton.

Example.

(a
c)

(
b
d

)
(a

d)

(a
d)

(
b
d

)

An implementation is given by a synchronous sequential
transducer.

Example.

a/c

b/d

a/d

b/d Which one is better?

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 3 of 16

Quality in Synthesis

Spec Synthesis

Impl1

Impl2

Impl3

A quality measure is a function Q : (Σ× Γ)∗ → Q.

Spec
⊗

Quality
Synthesis

Impl1

Impl2

Impl3

low quality

high quality

high quality

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 4 of 16

How to Define High Quality?
I All executions have a lower bounded quality:

∀i1o1i2o2 · · · ∈ [Impl] : Q
(

i1 i2 ···
o1 o2 ···

)
≥ c

I All executions are quality optimal:

∀i1o1i2o2 · · · ∈ [Impl] : Q
(

i1 i2 ···
o1 o2 ···

)
= supo′

1o′
2··· Q

(
i1 i2 ···
o′

1 o′
2 ···

)

I All executions are almost quality optimal:

∀i1o1i2o2 · · · ∈ [Impl] : supo′
1o′

2··· Q
(

i1 i2 ···
o′

1 o′
2 ···

)
−Q

(
i1 i2 ···
o1 o2 ···

)
≤ c

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 5 of 16

Weighted Specifications (:= Boolean Spec ⊗ Quality)

A weighted specification is a function val : (Σ× Γ)∗ → Q∪−∞
given by a synchronous deterministic weighted automaton.

Example.

(a
c)| −1

(
b
d

)
| 6 (a

d)| 1

(a
d)| 1

(
b
d

)
| 2

The value val of a pair depends on the used payoff function.

Example. Sum(
(

a a b
c d d

)
) = −1 + 1 + 2 = 2, Sum(aab⊗ cdd) = 2

The specification domain is {u | val(u⊗ v) ∈ Q}. An input is
valid if it is from the domain.

Example. Specification domain = a∗b

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 6 of 16

Threshold Synthesis

The threshold synthesis problem asks, given c ∈ Q, and
. ∈ {>,≥}, that the implem. f satisfies for all valid inputs u:

val(u⊗ f(u)) . c

Example. Sum-specification and Implementation

(a
c)| −1

(
b
d

)
| 6 (a

d)| 1

(a
d)| 1

(
b
d

)
| 2

a/d

b/d

Implementation ensures value of at least 3 for all pairs.
Sum(b⊗ d) = 6, Sum(aib⊗ di+1) = i · 1 + 2

Note: Implementation can do anything on invalid inputs.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 7 of 16

Threshold Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
threshold

NP ∩ coNP NP ∩ coNP NP

non-strict
threshold

NP ∩ coNP NP ∩ coNP NP ∩ coNP

How to solve? See it as a game problem.

We introduce a new type of game.

Critical prefix games

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 8 of 16

Critical Prefix Games
Tailored to handle
I finite inputs
I partial specification domains

A critical prefix game is an infinite-duration two-player
turn-based weighted game with critical vertices.
I When a play is in a critical vertex, quantitative constraints

on the prefix are checked,
I if fulfilled, the play continues, otherwise Adam wins.

I Nothing checked for non-critical vertices.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 9 of 16

Critical Prefix Games and Threshold Synthesis
Threshold synthesis reduces to critical prefix games with
threshold conditions.

These games are decidable for sum, average, and
discounted-sum payoffs.
I Sum and average critical prefix games reduce to

mean-payoff games.
I Discounted-sum critical prefix games reduce to

discounted-sum games.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 10 of 16

Best-value Synthesis

The best-value synthesis problem asks that the
implementation f satisfies for all valid inputs u:

val(u⊗ f(u)) = bestVal(u) := supv val(u⊗ v),
that is, the maximal value achievable for input u.

Example. Sum-specification

(a
c)| −1

(
b
d

)
| 6 (a

d)| 1

(a
d)| 1

(
b
d

)
| 2

bestSum(b) = 6
bestSum(ab) = 5

bestSum(aab) = 4
bestSum(aaab) = 5

bestSum(aaaab) = 6
No best-value implementation exists.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 11 of 16

Best-value Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
best-value Ptime [AKL10] Ptime [AKL10] NP ∩ coNP

Proof Techniques
I Sum: reduces to determinization by pruning of

Sum-automata
I Avg: reduces to Sum
I Dsum: reduces to a discounted-sum game

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 12 of 16

Approximate Synthesis

The approximate synthesis problem asks, given c ∈ Q, and
/ ∈ {<,≤}, that the implem. f satisfies for all valid inputs u:

bestVal(u)− val(u⊗ f(u)) / c

Example. Sum-specification and Implementation

(a
c)| −1

(
b
d

)
| 6 (a

d)| 1

(a
d)| 1

(
b
d

)
| 2 b/d a/c

a/d

b/d

Implementation ensures value of at most 2 less the best value.
Sum(b⊗ d) = 6 bestSum(b) = 6
Sum(ab⊗ cd) = 5 bestSum(ab) = 5
Sum(aib⊗ cid) = i bestSum(aib) = i + 2, for i ≥ 2

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 13 of 16

Approximate Synthesis

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

NEXPtime for
discount 1/n

non-strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

EXPtime for
discount 1/n

Proof Techniques
I Sum: reduces to regret determinization of Sum-automata
I Dsum: open in general, for integer discounts reduces to

discounted-sum games
I Avg: best-value synthesis reduces to Sum, no longer the

case for approximate synthesis

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 14 of 16

Approximate Synthesis with Average Payoff
bestAvg(u)− Avg(u⊗ v) / c ⇔ bestSum(u)

n − Sum(u⊗v)
n / c

⇔ bestSum(u)− Sum(u⊗ v) / c · n

bestAvg(u)− Avg(u⊗ v) = 0 ⇔ bestSum(u)− Sum(u⊗ v) = 0

Example. Specification and Implementation

(a
c)| −1

(
b
d

)
| 6 (a

d)| 1

(a
d)| 1

(
b
d

)
| 2 b/d a/c

a/d

b/d

Sum(aib⊗ cid) = i bestSum(aib) = i + 2, for i ≥ 2
Avg(aib⊗ cid) = i

2i+2 bestAvg(aib) = i+2
2i+2 , for i ≥ 2

Reduces to (a special type of) critical prefix games with
imperfect information which reduce to imperfect information
games with fixed initial credit.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 15 of 16

Results

Problem
Spec Sum- Avg- Dsum-

automata automata automata
strict
threshold

NP ∩ coNP NP ∩ coNP NP

non-strict
threshold

NP ∩ coNP NP ∩ coNP NP ∩ coNP

best-value Ptime
[AKL10]

Ptime [AKL10] NP ∩ coNP

strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

NEXPtime for
discount 1/n

non-strict
approximate

EXPtime-c
[FJL+17]

decidable
EXPtime-hard

EXPtime for
discount 1/n

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 16 of 16

Benjamin Aminof, Orna Kupferman, and Robby Lampert.
Reasoning about online algorithms with weighted
automata.
ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.

Emmanuel Filiot, Ismaël Jecker, Nathan Lhote,
Guillermo A. Pérez, and Jean-François Raskin.
On delay and regret determinization of max-plus automata.
In LICS, pages 1–12. IEEE Computer Society, 2017.

Synthesis from Weighted Specifications – Sarah Winter FSTTCS 2020 16 of 16

