Synthesizing Computable Functions from
Synchronous Specifications

Sarah Winter

Université libre de Bruxelles, Belgium

January 6, 2021
YR-OWLS, online

Reactive Synthesis of Non-terminating Systems

L synthesize .
Specification ------------- oo > Implementation
one input is in relation algorithm that selects
with several outputs a unique output for each input

010100 - - 016490 - -

...101011 ...101011
— Spec [191101 - — Impl | {11017
e AN N

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 2 of 24

Church Synthesis

—req/—grt */—grt —req/—grt
req/—grt

*/grt
req/grt req/grt
Synchronous specifications Synchronous implementations
(synchronous relations) given by
e.g, given by Mealy machines

synchronous transducers with
parity acceptance

Theorem (Biichi/Landweber'69). It is decidable whether a syn-
chronous specification is implementable by a Mealy machine.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 3of 24

More Relaxed Implementations

Goal Decide whether a synchronous specification is
implementable (by an algorithm/a program/a deterministic
Turing machine).

Specification: contains pairs of the form

(a1a2a3"' , @3) S {(I, b}w X {avb}w

no implementation by a Mealy machine exists,

can be implemented, every deterministic machine has to
wait until it sees the third input letter

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 4 of 24

More Relaxed Implementations

Specification: contains pairs of the form

(quz,A‘“'ﬁ) (uBoz,BMﬁ),

where u € {a,b}*, o, 5 € {a,b}¥, A, B are special letters
can be implemented, but, every deterministic machine has
to wait arbitrary long to output something valid

e.g., implemented by a deterministic machine that
computes the function

wAa — Ao uBa — Bl

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 5 of 24

Computability

What does it mean to be implementable for a relation?

» There is a computable function f with the same domain as
the relation R such that (o, f(a)) € R for all a € dom(R).

A function f: ¥* — I'“ is computable if there exists a
deterministic Turing machine that

» outputs longer and longer prefixes of an acceptable output

» while it reads longer and longer prefixes of the input.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 6 of 24

Computability

Consider a deterministic Turing machine M with
> three tapes
» a one-way read-only input tape
P> a two-way working tape
P> a one-way write-only output tape

» M (a, k) denotes the output written after reading the first &
letters of the input sequence «

M computes f if for all a € dom(f):
» Vk: M(a, k) is a prefix of f(«), and
> Vi 3j: |M(a,j)] > i

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 7 of 24

Computability and Continuity

A function f: ¥ — I'“ is continuous at o € dom(f) if
» Vi 35 VB € dom(f): |aA S| > 7 implies |f(a) A f(B)| > i.

f is continuous if it is continuous at every a € dom(f).

fi: uda — A"l uBa — B,
for all u € {a,b}*, « € {a,b}* is continuous

2. O >
J {bw otherwise

for all a € {a,b}* is not continuous

w

a” if a contains co many a

> If f: 3% — I'“ is computable, then it is continuous,

» the converse does not hold.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 8 of 24

Computability and Continuity

CO%‘FI VLA TS gutﬂ:l“\ws

Comp-tele aeuv\cuw“a

4 [Mf-ﬂ\-l
d wonc

=

il [—
furelis | 5 |

/ _Yj-)cr o Dug

?‘;ﬁ:‘:‘:‘% juu\c. R Lagh}

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter

e

9 of 24

Total vs. Partial Domain

» In synthesis, often a total specification domain is assumed,
else the synthesis task fails by design

» Here: We allow partial domain

Specification: contains pairs of the form
(uAa,A‘"',B) (uBa,B|"|,6’),

where u € {a,b}*, a, 5 € {a,b}*, A, B are special letters
has partial domain {a,b}*{A, B}{a,b}*

e.g., implemented by a deterministic machine that
computes the function vAa — Al"la uBa — BlUla

There is no way to complete the domain and remain
implementable!

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 10 of 24

Results for Total Domain

Theorem (Holtmann/Kaiser/Thomas'10). It is decidable in 2EX-
PTiME whether a continuous function can be synthesized from a
given synchronous relation with total domain.

Theorem (Klein/Zimmermann'14). It is EXPTIME-complete to
decide whether a continuous function can be synthesized from a
given synchronous relation with total domain.

Is the function computable?

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 11 of 24

Implementations for Total Domain

Theorem (Holtmann/Kaiser/Thomas'10). Such a synthesized
function is computable by a sequential transducer.

A transducer is sequential if its underlying input automaton is
a DFA.

aje b/aab /e alaab
O BB
b/bb

(asynchronous) transducer sequential transducer

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 12 of 24

Results for Partial Domain

Theorem (Filiot/W.). It is EXPTIME-complete to decide
whether a continuous function can be synthesized from a given
synchronous relation with partial domain. Such a synthesized
function is computable.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 13 of 24

Proof Idea

Game view
» Adam plays input letters
> Eve plays output letters

> If the input sequence is in the specification domain,
input 4+ output sequence must be in relation wrt the
specification

Problem
» Eve might need an unbounded lookahead on Adams moves

» We want a finite game arena, cannot store the lookahead
explicitly

Solution

» Instead of an explicit lookahead, store a finite abstraction

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 14 of 24

Proof Idea

Given a finite input word u € ¥*, its profile P, stores all
inducible state transformations wrt the specification automaton.

Game ldea
» Adam plays input letters, building lookahead profiles

» Eve can delay her her move, or chose a state transformation
from a lookahead profile (instead of playing output letters)

(o T w [w]

| A € Py, I)\z € Pu2|

Winning condition If Adam plays a valid input sequence,
> Eves makes a move infinitely often,

» her moves describe an accepting run wrt the specification.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 15 of 24

Implementations for Partial Domain

Theorem (Filiot/W.). If a synchronous relation with partial
domain is implementable, then it can be implemented by a de-
terministic two-way transducer.

Specification: contains pairs of the form
(quz,A‘“'ﬁ) (uBa,BMﬁ),

where u € {a,b}*, a, 8 € {a,b}¥, A, B are special letters
e.g., implemented by a deterministic two-way transducer
that computes uda — Al“la uBa — Bllq
transducer goes right until A resp. B is read, no output
goes back left to the beginning, no output
goes right, outputs A resp. B for every letter until A resp.
B is read,
goes right and copies the input

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 16 of 24

Total vs. Partial Domain Implementations

Total domain

> Sequential transducers with bounded lookahead suffice
» Intuitive reason for bounded lookahead

> If an arbitrary long lookahead is needed to determine the
next output,

» then a deterministic machine may wait forever to output
something valid.

> Result: a finite output sequence, but the infinite input
sequence is valid #

Partial domain

» Deterministic two-way transducers suffice, sequential
transducers do not

» Unbounded lookahead may be necessary

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 17 of 24

Summary

Impl || Mealy computable
Spec machine
synchronous EXPTiME-c! | EXPTIME-c?
w/ total domain
synchronous EXPTIME-¢c! | EXPTime-c?

w/ partial domain

I Starting from a specification given by a non-deterministic automaton
2 Starting from a specification given by a deterministic automaton

» Implementations for total domain

» sequential transducers suffice
» bounded lookahead suffices

» Implementations for partial domain

» deterministic two-way transducers suffice
» unbounded lookahead may be necessary

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 18 of 24

Going Beyond Synchronous Specifications

> It is decidable whether a synchronous specification can be
implemented.

» What about more powerful specifications?

Theorem (Filiot/W.). It is undecidable whether a given rational
relation can be implemented.

Theorem (Filiot/W.). It is undecidable whether a continuous,
computable, resp., sequential function can be synthesized from a
given rational relation.

» Finite word setting: Undecidable whether a sequential
function can be synthesized. (Carayol/Léding'14)

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 19 of 24

Undecidability Proof (similar to finite word setting)

Reduction from Post’s Correspondence Problem
> A PCP instance uq,...,u, and vy, ..., Uy.
» Rational relation with domain {1,...,n}*{a,b}* and pairs
)] = g, - uy,, B if a contains oo many a
/Ll DY ’l/ma 3
Vv, -, B otherwise
with 41 -+ iy, € {1,...,n}" and «, 5 € {a,b}*.

PCP instance has no solution
> Gy > Uy, - UG, o is an implementation

> always uj, « -+ Uj,, 7 Viy ***V;

m

PCP instance has a solution
» no implementation exists

P> never known whether the input sequence has oo many a

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 20 of 24

Work in Progress: Deterministic Rational Relations

Class between synchronous and rational relations.

Recognized by special kind of transducers
> state set is partitioned into input and output states
P transition function: Qi x X —-Q U Qo xI' =@

recognizes f: u#a — «a, u€ {a,b}*, a € {a,b}*
f is not synchronous

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 21 of 24

Work in Progress: Deterministic Rational Relations

Almost Sure Theorem. It is decidable whether a continuous
function can be synthesized from a given deterministic rational
relation.

Almost Sure Theorem. Such a synthesized function is
computable by a deterministic two-way transducer.

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 22 of 24

Open question

Is it decidable whether a synchronous relation with partial
domain is implementable using only finite memory?

Specification: (a*b--- ,b---) (a*c---,c---)
Specification is implementable, e.g., by a finite-memory
machine (sequential transducer) that computes the function

ab-- b a'c-— &

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter 23 of 24

Summary

Impl || Mealy sequential computable
Spec machine transducer
synchronous EXPTmME-c' | EXPTiME-c? | EXPTIME-c?
w/ total domain
synchronous EXPTiME-c! | open EXPTIME-c?
w/ partial domain
det. rational H open \ open \ EXPTIME-c
rational H undecidable \ undecidable \ undecidable

1

non-deterministic specification

2 deterministic specification

Synthesizing Computable Functions from Synchronous Specifications — Sarah Winter

24 of 24

