Finite-Valued Streaming String Transducers
Sarah Winter
IRIF, Université Paris Cité, France
based on joint work with

Emmanuel Filiot, Ismaél Jecker, Christof Loding, Anca Muscholl,
Gabriele Puppis

August 22 @ RAMICS 2024, Prague, Czech Republic

Finite Automata and Languages

Finite automata define a very robust class of languages

> many equivalent automaton models: deterministic,
nondeterministic, 2-way, e-transitions

» various other representations: regular expressions, MSO logic,
monoids

> excellent closure-properties: Boolean operations, projection,
homomorphisms, reversal, . . .

> many interesting problems decidable: equivalence, emptiness,
universality, . ..

2/36

(Word-)Transductions
A (word-)transduction is a relation R C X* x X* between words.
Examples.

reverse abaabba — abbaaba
copy abaabba — abbaabaabbaaba

sort abaabba — aaaabbb
delete as abaabba — bbb
infix abb — ¢,a,ab, abb

rotate abb — abb, bba, bab
iterate abb — abb, abbabb, abbabbabb, . . .

3/36

(Word-)Transductions
A (word-)transduction is a relation R C X* x X* between words.
Examples.

reverse abaabba — abbaaba
copy abaabba — abbaabaabbaaba

sort abaabba — aaaabbb
delete as abaabba — bbb
infix abb — ¢,a,ab, abb

rotate abb — abb, bba, bab
iterate abb — abb, abbabb, abbabbabb, . . .

Transductions are defined by (finite) transducers (automata with

output). Unlike for automata, the defined classes of transductions
vary by transducer model.

3/36

Transducer Models

Finite Transducers

A finite transducer (FT) is a finite automaton that additionally has
output words on its transitions.

Example. Deterministic FT.

a|bb it a. baat
DPT: Qb\ﬁ e b Ly ap &
Olo;g—>7o —%—%70@%7 o 7

@ ofpad BbLLLS

5/36

Finite Transducers

A finite transducer (FT) is a finite automaton that additionally has
output words on its transitions.

Example. Nondeterministic FT.

ol g o
ble b\b

ala

N¥T
>@ bih >’
‘V\thwgﬂg, Su%f‘l)

5/36

Properties of Finite Transducers

» DFTs define functions, NFTs can define relations.

» [t is decidable whether an NFT defines a function
(Schitzenberger 1975).

» Equivalence is decidable for DFTs (Blattner, Head 1979).

» Equivalence is undecidable for NFTs
(Fischer, Rosenberg 1968).

» Fewer closure-properties than finite automata, e.g.,
FTs are not closed under intersection.

6/36

Properties of Finite Transducers

» DFTs define functions, NFTs can define relations.

> It is decidable whether an NFT defines a function
(Schitzenberger 1975).
» Equivalence is decidable for DFTs (Blattner, Head 1979).
» Equivalence is undecidable for NFTs
(Fischer, Rosenberg 1968).

» Fewer closure-properties than finite automata, e.g.,
FTs are not closed under intersection.

Drawback
» FTs are limited in their expressiveness, for example “copy”,
“reverse”, “sort”, ... are not definable.

4

> Is there a more expressive model?

6/36

2-way Finite Transducers

A 2-way finite transducer (2-FT) can move left and right on its
input tape and produce output from left to right.

Example. Deterministic 2-FT.
“ copy owd rtuuse !

ala. > ala. 4
b|b1|> b‘z"’d

RN STINC, ISSN(cy
inpu-k»: l—-Q/ba-a("f

owkped - obaa axba

7/36

2-way Finite Transducers

A 2-way finite transducer (2-FT) can move left and right on its
input tape and produce output from left to right.

Example. Nondeterministic 2-FT.

ala . D ale . 4
Hib, > b\e 4 « el
2NFT:
NIRRT @ w=> {wln>1y
l—\e,b
4l¢,4

@

7/36

MSO Transductions

A monadic second order logic transduction (MSOT) takes a fixed
number of copies of the universe of the input structure, and defines
the relations of the output structure by MSO formulas.

Example. Deterministic 2-FT.
“ Copy e rtvrse”

N R C

ES [)
9" ty) = Slxy) 000
¥ () = wey a ladld] fia b= ik Tarl)=L
Y 22 y) = Sly,x) Y7 ()= 0) | ces

Y&) = + Ye(y - o) oe g

8/36

Overview: MSOT and 2-FT

Theorem (Engelfriet, Hogeboom 1988).

DMSQOT and 2-DFT have the same expressive power. The classes of
transductions defined by NMSOT and 2-NFT differ.

(rotede
apleeie”

9/36

An Equivalent 1-way Model?

>

>

The connection between MSO logic and finite automata is a
cornerstone of the analysis of logical specifications.

We have such a connection between MSO transductions and
2-way finite transducers.

Unfortunately, reasoning with 2-way models can be quite
technical and involved.

Is there a 1-way model that expresses MSO definable
transductions?

Also, implementation-wise a 1-way model might be preferred.

10/36

Streaming String Transducers

A Streaming String Transducer (SST) is a finite automaton with a
set X of output registers. Transitions are additionally annotated with
register updates, one for each register X € X, of the form

X:=wXjwy - - wpy Xywy1 with X; € X and w; € *

11/36

Streaming String Transducers

A Streaming String Transducer (SST) is a finite automaton with a
set X of output registers. Transitions are additionally annotated with
register updates, one for each register X € X, of the form

X:=wXjwy - - wpy Xywy1 with X; € X and w; € *

Register updates are required to be copyless: each register appears
at most once in the right-hand side of the updates in a transition.

X = a,bx
v = YXb

a, 2z = 2Za
O————0O

11/36

Example: Deterministic SST
“ LOp adhe reverse”

X := X0
Qy-=0V
X =z
Y=t —XY
S S 5S> abblba
)(Gli X._: a 5(::'0/,9 J(:=ccerflr
7’:2, 7= Atk

12/36

Example: Nondeterministic SST

X::XO’ Xi:i(
0-;\/:.:\/ 0) 7:':/0—

13/36

Overview: Adding SSTs

Theorem (Alur, Cerny 2010; Alur, Deshmukh 2011). DMSOT and
DSST have the same expressive power. So have NMSOT and NSST.

(« rotod”
ek

14 /36

Languages vs. Transductions

« otk
w \,ru\(,‘\

DFAWFA £a7A)
2DFA 2NFA |
Gy & (M3, ...

ﬂc}M\"f (w/\gw‘aa\s

= uncforweRons

15/36

Inbetween Functions and Relations

» Equivalence is decidable for 2-DFTs, DMSOTs, and DSSTs,
while it is undecidable for their nondeterministic counter-parts.

> For NFTs, there is a robust subclass, namely NFTs defining
finite-valued relations.

» Does this robustness extend to finite-valued relations defined by
2-NFTs, NMSOTs, NSSTs?

16/36

Finite-valued Transducers

Finite-valued Transducers

A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

Example.

. alé al &
NET g,.\t o €

>@ arWr @ﬁ;@)Qd@g
'“,Lp_)r m_a.bbk‘b@

OA"O/&S 0(.&/5 (%55, &79 | Ego.

18/36

Properties of Finite-valued FTs

A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

» Equivalence for finite-valued NFT is decidable (Culik,
Karhumaki 1986).

» Itis decidable if a given NFT is finite-valued (Weber 1990).

» Every k-valued NFT can be effectively decomposed into a union
of k single-valued NFT (Weber 1993).

19/36

Properties of Finite-valued FTs

A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

» Equivalence for finite-valued NFT is decidable (Culik,
Karhumaki 1986).

» Itis decidable if a given NFT is finite-valued (Weber 1990).

» Every k-valued NFT can be effectively decomposed into a union
of k single-valued NFT (Weber 1993).

» Decomposition allows for a new test for equivalence.

Given MVETs , T ¥M;k~\luluuk
Cecl _lc_ O"E E amau»mw

19/36

What About Finite-valued SSTs?

NSST were introduced by (Alur, Deshmukh 2011). The authors
raised the following questions:

» Is finite-valuedness of NSST decidable?
» Is equivalence for NSST decidable?

» Can every finite-valued NSST be decomposed into a finite
union of DSST?

20/36

What About Finite-valued SSTs?

NSST were introduced by (Alur, Deshmukh 2011). The authors
raised the following questions:

» Is finite-valuedness of NSST decidable?
» Is equivalence for NSST decidable?

» Can every finite-valued NSST be decomposed into a finite
union of DSST?

We give positive answers to all these questions and consequently
obtain also results about finite-valued 2-NFTs and NMSOTs.

20/36

Results

Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete)
whether a nondeterministic SST is finite-valued.

21/36

Results

Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete)
whether a nondeterministic SST is finite-valued.

Decomposition

Theorem (FJILMPW 2024). Every k-valued SST can be effectively
decomposed into a union of k deterministic SST.

21/36

Consequences of Decomposition Result
Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for k-valued SST is decidable in
elementary time.

Decidability was already known (Muscholl, Puppis 2019), but
without an elementary upper complexity bound.

22/36

Consequences of Decomposition Result
Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for k-valued SST is decidable in
elementary time.

Decidability was already known (Muscholl, Puppis 2019), but
without an elementary upper complexity bound.

Corollary. For finite-valued relations, the classes of 2-NFT, NSST,
and NMSOT coincide.

The decomposition entails a translation from finite-valued NSST to
2-NFT. The other direction was already known (Alur, Cerny 2011).

22/36

Overview: Adding Finite-valued Relations

© rotede.”
e

JZ{ i k- vedmed

23/36

Deciding Finite-valuedness

Characterization for Finite-Valuedness

Lemma. An SST is finite-valued iff it does not contain a “simply

divergent W-pattern”.

(]ZV v

Cxidk Wi, ns € {12 9@7@ ﬁfe

ek Riak B s Selow

Ffotfucc Mfw cM’(,OWJfS ’)@ @
W Wy " s _L,
OID Sy qAU'VL" > 7,, Uvw o Dl/, ﬂ;‘.‘) 911 ‘11%7¢ "‘)7&

s e uvtl; _é_>
e “ngqz W 5gq, 2592 =)

(%]
Io —5—5‘14\“/ =91

25/36

Differences between FTs and SSTs
Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are
> a pumping technique for loops, and

» comparing the “delay” between runs on the same input.

26/36

Differences between FTs and SSTs

Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are

> a pumping technique for loops, and

> comparing the “delay” between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have
this restriction.

Example. Q | bb Qq] bbxX, bXb, Xbb

VFT ~> oST @X

26/36

Differences between FTs and SSTs

Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are
> a pumping technique for loops, and

» comparing the “delay” between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have
this restriction.

Example. Q | bb Qq] bbxX, bXb, Xbb

VFT ~> oST @X

This makes it necessary to develop a new pumping technique and a
new notion of “delay”. A suitable notion of “delay” was introduced
in (Filiot, Jecker, Léding, W. 2023).

26/36

Skeleton-idempotent Loops

The skeleton of an update « : X — (X & X)* is the update
& : X — X* obtained by removing all letters from .

Skeletons and their composition form a finite monoid.

A skeleton-idempotent loop is a factor of a run that starts and ends
in the same state and induces a skeleton-idempotent update (that is
an update a so that « and « - « have the same skeleton).

Example.

X/u = o Xa b)(lc, " Xa =)(45(7_
/Kzi:& < Xz = ¢

\q = eLo((J(,[)l;, () c - aouX45>(zc bac
A % ’
2 T oL

27/36

Skeleton-idempotent Loops
Example.

Xa = o X bxzc o/z Xa :=)("}(L

O<:)<,L:_—_—Og : XZ_::E

. 5(/1 = &0((}(4)[;» “(%L)C = OLOLX”!DyZCbCL(.

O('Ok %z, _—

°<7" Ya-m aocoXab K ¢ bacbac

X-)/ = oL

28/36

Pumping Skeleton-idempotent Loops

Let « be a skeleton-idempotent update. For every X € X there exist
two words u,v € Z* such that

o (X) = u" Lo X)L,

29/36

Pumping Skeleton-idempotent Loops

Let « be a skeleton-idempotent update. For every X € X there exist
two words u,v € Z* such that

o (X) = u" Lo X)L,

Example. o X, = aXabXac
5(1 =
(1) = (o)) (bae)”

oL ()(LB = [XD)

29/36

Pumping Skeleton-idempotent Loops

Let « be a skeleton-idempotent update. For every X € X there exist

two words u, v € £* such that

o (X) = u" Lo X)L,

Example. o X, = aXabXac
: N

(L) = (0) (bae)”
" ()= o [XD)

A Ramsey-type argument shows that in a long enough run a

sequence of (pairwise disjoint) skeleton-idempotent loops occur.

29/36

Pumping Skeleton-idempotent Loops

Given a run with m such loops, pumping the i-th loop n; times yields
output of the form

)klfl)kz*l .

wo (11 w1 (up wq (up) w,,

where 7 is bounded by 2m|X| and ky, ..., k; € {n1,..., 1y}

30/36

Pumping Skeleton-idempotent Loops

Given a run with m such loops, pumping the i-th loop n; times yields
output of the form
by (ug)e - () My,

wo(u1)
where 7 is bounded by 2m|X| and ky, ..., k; € {n1,..., 1y}
o (> Y
X/a = O&Xfl bx‘LC— X4 =)(/' X’l ‘-:)(1
X{L =)(1. = >(Z)GL fsza
X?, i= &b Ko =)(1, X”bi:x“;
e s N o
-—}8% g’—> X4>(7,)(3 MM @ /Qra/

-7 Wa-1
Xa Xo Xy

30/36

Pumping Skeleton-idempotent Loops

Goal: Use the “simply divergent W-pattern” to create a set of runs
(via pumping) with the same input but different outputs.

L

C)(& Wa,.. N5 € {”LZB . £
tueh Rk Ilbu. wing below
produce AL forent ontpats %@ @
wu w'ly wv' wis AN
9o S 11 — 9= O[z—’5‘ﬁ 1>

uv e wij .{7_>
gz %"J Q2 WL >q, — A= 7

o g4

31/36

Word Inequalities

A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that
the resulting words are different.

32/36

Word Inequalities

A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that

the resulting words are different.

Example.

> *aa(b)*abba # ababaa ¥ (one parameter)

The only non-solution is x = 2:

aabbabba =
ababaa

32/36

Word Inequalities

A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that

the resulting words are different.

Example.

> *aa(b)*abba # ababaa ¥ (one parameter)

The only non-solution is x = 2:

aabbabba =
ababaa

> b(ab)Yab(b)* + *ba(b)’b (two parameters)

Non-solutions are all choices such that x =y,
Solutions are all choices such that x # y.

32/36

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single
parameter x either has no solutions or the set of solutions is co-finite
(the number of non-solutions is bounded by the number of
occurences of x in the inequality).

33/36

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single
parameter x either has no solutions or the set of solutions is co-finite
(the number of non-solutions is bounded by the number of
occurences of x in the inequality).

Consequences

» We show properties of the solution space for word inequalities
with multiple parameters.

» We show that if each inequality in a finite system of inequalities
is solvable, then the system is solvable.

33/36

“simply divergent W-pattern” =- not finite-valued

» Pattern yields two runs whose outputs have the right format for
a word inequality with parameters x,y, z.

Q" Y X N 2
A\ v,/ /\/m\ [V (\J:,\ f;/v:w‘\ £
% # 9o S5 qy q1 L gty 4 } =01
~ s~
5‘ To qzd,—/ ~N—— ~—~——
%@ @ X Y z

» Since there is one solution (x = 1,y = 1,z = 1), the set of
solutions is infinite (and obeys some properties).

» Weshow that(x =i—1y=j—i—1,z=M—j) foralli < j (with
i,] from a specific set) for some arbitrarily large M is a solution.

34/36

“simply divergent W-pattern” = not finite-valued
V-1 P M~¢

QV v f\/\ {\/"\
@ w g w S ws W'y m uvi . “_"tia E—)
AN} [g qiti g tfiguulin g o g S
\Gf ﬁf 9 gy g1 4 G W, g WS g, 2B o
. ¢ 0 N—— —~——
N AN _
@) @ o1 ¢ a

35/36

“simply divergent W-pattern” =- not finite-valued

) -1 PR M-¢
é?v {Jnﬂ\ [y s
D\ w W o W o uvh We g €
A\Y (0 qooqutly g liguiy gyt g S0 Sop
. Wy o Wity g, w5 q, 9950, £5g
5\ 3 ‘7\7 ‘il__/ \.,\(_4/ \M,z_/
@) @) o1 ¢ 1

> We now parameterize each v in (uo™w) !, each v in
(uv™w)~'—1, and each v in (uv"sw)M—.

$4 Se Si-1
r~

M-(\/n)w)0’4%74”. t“M(V u)‘i/t

Go 2> 9.
L1
> Iterating through all i < j forms a finite system of word

inequalities. It has a solution as each inequality has a solution.

» Each inequality is generated by a run with the same input.
Hence, the SST is not finite-valued.

35/36

Summary

> We completed the picture for finite-valued SSTs concerning
their expressive power and answered key decidability questions.

» Future work: Complexities are likely not optimal.

(roted.”
ek

O NET N MSIT USST

36/36

	Transducer Models
	Finite-valued Transducers
	Deciding Finite-valuedness
	Summary

