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Abstract

We present an automaton model that recognizes relations of finite or infinite
words over infinite alphabets. We show that the relations recognized by our au-
tomaton model are monadic second-order definable and show a general equiva-
lence between monadic second-order definability and recognizability in case of
infinite alphabets.

From this result we obtain a new application to monadic chain logic. We
provide an extension to chain logic over infinitely branching trees by addition-
ally allowing monadic second-order definable connections between siblings.

Kurzfassung

Wir präsentieren ein Automatenmodel welches Relationen von endlichen oder
unendlichen Wörten über unendlichen Alphabeten erkennt. Wir zeigen, dass
die von unserem Automatenmodel erkannten Relation definierbar sind in mo-
nadischer Logik zweiter Stufe, sowie die generelle Äquivalenz zwischen MSO
Definierbarkeit und Erkennbarkeit im Fall von unendlichen Alphabeten.

Unsere Ergebnisse ermöglichen uns eine neue Anwendung der Kettenlogik.
Wir erweitern diese über unendlich verzweigte Bäume durch MSO-definierbare
Verbindungen von Geschwisterknoten.
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5.5 Determinization of M-L-Büchi Automata . . . . . . . . . . . . . 38

5.5.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.2 Safra’s Construction Adapted to Infinite Alphabets . . . . 41

6 Application to Monadic Chain Logic 45
6.1 Chain Logic over the Infinite Binary Tree T2 . . . . . . . . . . . . 45
6.2 Chain Logic over TN with MSO on Siblings . . . . . . . . . . . . 48
6.3 Chain Logic over Tree Iterations . . . . . . . . . . . . . . . . . . 52

7 Conclusion 55

Bibliography 57

vii



viii



Chapter 1

Introduction

An equivalence between languages recognized by finite automata and monadic
second-order logic over finite words was found in the early 1960s. Büchi [Büc60],
Elgot [Elg61], and Trakhtenbrot [Tra62] proved that monadic second-order logic
definable languages coincide with regular languages. Büchi [Büc62] showed that
an equivalence exists between finite automata and monadic second-order logic
over infinite words and Rabin [Rab69] showed such an equivalence between
finite automata and monadic second-order logic over infinite trees. This is the
essential background result for this work. Rabin’s tree theorem states that the
monadic second-order theory of the infinite binary tree is decidable.

In applications more restricted logics are of interest. Over trees, path logic
and chain logic are fragments of monadic second-order logic in which set quan-
tifications are restricted to paths and chains, i.e. subsets of paths, respectively.
These logics were first studied in [Tho87]. The restriction allows to extend
the expressibility beyond successors. Adding the binary equal level predicate
allows to connect vertices of the same tree level. It is well known that extend-
ing monadic second-order logic over the infinite binary tree by the equal level
predicate is undecidable, see [Tho90], whereas adding the equal level predicate
to chain logic results in a decidable extension of chain logic. This was shown
in [Tho92]. The proof provides a reduction of the chain theory with equal level
predicate of the infinite binary tree to the monadic second-order theory S1S of
one successor which was already shown to be decidable by Büchi in [Büc62].

This thesis is concerned with an extension of this result in the following way.
We consider decidability of chain logic over infinitely branching trees and addi-
tionally allow monadic second-order definable connections between siblings, i.e.
the children of a parent node. As a background for this application we define an
automaton model that recognizes relations of words over infinite alphabets. The
new automaton model is defined as a finite synchronous multitape automaton
with logical formulas as transition constraints. A similar automaton model was
introduced in [Bès08]. Bès also defined synchronous multitape automata over
infinite alphabets, but the transition constraints are restricted to first-order
formulas only. We will show that the relations recognized by our automaton
model are monadic second-order definable and show a general equivalence be-
tween monadic second-order definability and recognizability in case of infinite
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2 Chapter 1. Introduction

alphabets. Here we work in an abstract framework in which first-order logic
(as in Bès) is replaced by any logic L speaking over elements of the infinite
alphabet.

This thesis is structured as follows. In the next chapter we introduce basic
notations from mathematical logic and give a short introduction to first-order
logic and some of its extensions, which we use in the subsequent chapters of
this thesis.

In Chapter 3 we fix notations regarding finite automata. We introduce a
new automaton model, denoted M-L-automaton when the alphabet structure
is M and the considered logic is L, which recognizes relations of words over both
finite and infinite alphabets. We prove that the class of relations recognized
by the automaton model is closed under Boolean operations and projection.
Furthermore we investigate whether the decision problems are decidable.

In Chapter 4 we present a logical characterization of relations recognized by
the automaton model using monadic second-order logic. We show the equiva-
lence of monadic second-order logic interpreted over words over infinite alpha-
bets and finite automaton recognizability.

In Chapter 5 we extend the results of the previous two chapters to the case of
infinite words. First we introduce an automaton model that recognizes relations
of infinite words over an infinite alphabet. We show that the equivalence of
monadic second-order logic definability and recognizability is maintained over
infinite words. Additionally, we provide a translation from this automaton
model into an equivalent deterministic automaton model.

In Chapter 6 we present an application to monadic chain logic over infinitely
branching trees with the equal level predicate. We consider an extension to
chain logic by adding features that allow monadic second-order definable state-
ments over the children of a parent node.

Finally, in the last chapter we summarize our results and give an outlook
on further possible extensions based on the work of the previous chapter.
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Chapter 2

Logical Formalisms

In this chapter we want to give an overview over first-order logic and some
extensions. For a detailed introduction to mathematical logic the reader is
referred to [EFT07].

2.1 Structures

Definition 2.1 A signature τ is a set of relation and function symbols, where
each symbol has a positive fixed finite arity. A function symbol with arity 0 is
called constant symbol. A signature is called relational if it consists entirely of
relation symbols.

In general, relation symbols are denoted by P,Q,R, . . . , function symbols
by f, g, h, . . . . A mathematical structure consists of a non-empty domain and
a set of finitary relations and functions on this domain.

Definition 2.2 A τ -structure M is of the form M = (Σ, RM
1 , . . . , f

M
1 , . . . )

where Σ is a non-empty set, called domain of M and

• for each n-ary relation symbol R in τ RM is an n-ary relation on Σ,

• fM is an n-ary function on Σ for each n-ary function symbol f in τ .

The relations and functions are the interpretations of the relation and func-
tion symbols in τ . If the interpretation is clear, we also denote a τ -structure
M = (Σ, RM

1 , . . . , f
M
1 , . . . ) by M = (Σ, R1 . . . , f1 . . . ).

A relational structure is a τ -structure, where τ consists entirely of relation
symbols.

In the next chapters, we will limit ourselves to relational structures. How-
ever, this is no restriction, because every structure has an equivalent relational
variant, which we obtain in the following way:

Definition 2.3 Given a τ -structure M. We associate to M a relational τ r-
structure M

r with domain Σr = Σ and each n-ary function fM : Σn → Σ is

3



4 Chapter 2. Logical Formalisms

replaced by its graph FMr

:= {(a1, . . . , an, an+1) ∈ Σn+1 : fM(a1, . . . , an) =
an+1}.

2.2 First-Order Logic

We now define the syntax and semantics of first-order logic (FO). A first-order
language is determined by a set of logical symbols and a fixed signature τ .

Definition 2.4 Let τ be a signature. We define the alphabet Στ of a first-order
language as follows:

• the relation and function symbols in τ ,

• a countably infinite set of variables x, y, . . . , x1, . . . ,

• the logical connectives ¬,∧,∨, and →,

• an equality symbol =,

• the quantifier symbols ∀ and ∃,

• bracket symbols (,).

Over this alphabet, FO-terms and FO-formulas can be constructed induc-
tively.

Definition 2.5 The τ -terms are words over the alphabet Στ which are induc-
tively defined as follows:

(1) Any variable is a τ -term.

(2) Let t1, . . . , tn be τ -terms and f a n-ary function symbol in τ , then
f(t1, . . . , tn) is a τ -term

Definition 2.6 The τ -formulas in first-order logic are inductively defined as
follows:

(1) If t1, t2 are τ -terms, then t1 = t2 is a τ -formula.

(2) If t1, . . . , tn are τ -terms and P is an n-ary relation symbol, then
P (t1, . . . , tn) is a τ -formula.

(3) If ϕ is a τ -formula, then ¬ϕ is a τ -formula.

(4) If ϕ and ψ are τ -formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ) are τ -
formulas.

(5) If ϕ is a τ -formula and x is a variable, then ∃xϕ and ∀xϕ are τ -formulas.

A formula obtained from rules 1 and 2 is said to be atomic.



2.3 Extensions of First-Order Logic 5

Usually it is more convenient to use infix notation for binary relation and
function symbols, e.g. we write x+ y instead of +(x, y). Bracket symbols can
also be omitted if it increases the readability of a formula.

An occurrence of a variable x in a formula ϕ can either be free or bounded
by a quantifier. It is bounded if x occurs in a subformula of the form ∃xϕ
or ∀xϕ, otherwise the occurrence is free. The notation ϕ(x1, . . . , xn) indicates
that in the formula ϕ at most the variables x1, . . . , xn occur free. A sentence is
a formula without free variables.

Definition 2.7 We define the satisfaction relation |= between a τ -structure
M and a τ -formula ϕ as usual with the standard semantics for the connectives
¬,∧,∨ and the quantifiers ∀,∃. Let M denote a τ -structure with domain Σ
and let ϕ(x1, . . . , xn) be a first-order τ -formula with at most free variables
x1, . . . , xn. We write

(M, k1, . . . , kn) |= ϕ(x1, . . . , xn)

with k1, . . . , kn ∈ Σ if ϕ is true in this semantics for the assignment of
xi = ki for 1 ≤ i ≤ n. We also write M |= ϕ[k1, . . . , kn].

Definition 2.8 Let M be a τ -structure. The first-order theory of the structure
M is the set of all τ -sentences that are satisfied in M. It is denoted by FO-
Th(M).

The FO-theory of a τ -structure M is decidable if and only if it is decidable
for every sentence ϕ whether M |= ϕ.

2.3 Extensions of First-Order Logic

In this section we mention some extensions of first-order logic.

Monadic second-order (MSO) logic is an extension to first-order logic by
second order variables X,Y, . . . ,X1, . . . which range over sets of elements. Ad-
ditional atomic formulas are X(x) with the intended meaning “x is an element
of the set X”.

Weak monadic second order (WMSO) logic is MSO logic where set quan-
tifications are restricted to finite sets.

For the subsequent two extensions of FO logic, see [EF95] from which the
following definitions are taken. Let k ≥ 1 and R is a 2k-ary relation on a set
Σ. The transitive closure TC(R) is defined by

TC(R) := {(a, b ∈ Σk × Σk) | there exists n > 0 and e0, . . . , en ∈ Σk such that
a = e0, b = en, and for all i < n, (ei, ei+1) ∈ R }.

Transitive Closure Logic FO(TC) is obtained by closing FO under the tran-
sitive closure of definable relations. The class of transitive closure formulas is
given by the usual rules for building first-order formulas and the new rule:
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[TCx,yϕ]s,t where the variables in x, y are pairwise disjoint and where the
tuples x, y, s, and t are of the same length, and s, t are tuples of terms.

The meaning of [TCx,yϕ]s,t is given by (s, t) ∈ TC({(x, y | ϕ(x, y)}).
First-order logic with counting quantifiers, in short FO(C) is an extension

of first-order logic by adding, for every l ≥ 1, a new quantifier ∃≥l with the
intended meaning “there are at least l”. A further restriction is the logic FO(C)s

which is a fragment of FO(C) with variables restricted to x1, . . . , xs.

2.4 Decidability Results

In this section we recall some well-known decidability results of first-order and
monadic-second order theories.

A result basically due to Gödel [Göd31] is that the first-order theory of
arithmetic (N,+, ·) is undecidable, whereas two important fragments of the
arithmetic are decidable. It is known that the first-order theory of (N,+), often
called Presburger arithmetic, is decidable [Pre29] and the first-order theory of
(N, ·), often called Skolem arithmetic, is decidable [Sko31].

The monadic second-order theory of (N,+) is undecidable. Considering the
weaker structure (N,+1), it was proven by Büchi [Büc62] that the monadic
second-order theory of (N,+1), often called S1S (second-order theory of one
successor), is decidable. Derived from this result were also the decidability of
WS1S, i.e. the weak monadic second order theory of (N,+1) and the decidability
of the fist-order theory of (R,+).

Additionally, the first-order theory of (R,+, ·) is decidable, which has been
proven in [Tar48] but not the monadic second-order theory of (R,+, ·). This
result goes back to Gödel.



Chapter 3

Automata and M-L-Automata

In this section, we introduce a new automaton model, called M-L-automaton,
that recognizes relations of words over both finite and infinite alphabets, called
M-L-recognizable relations. In M-L-automata, we specify the alphabet as the
domain of a structure M and use logical formulas in the language of a logic L

speaking over the structure M to set constraints to the transitions. Further-
more, we prove some properties of M-L-recognizable relations. Beforehand, we
recall some basic notions of finite automata theory.

3.1 Notation

An alphabet is a finite or infinite non-empty set Σ of symbols or letters. A word
over an alphabet Σ is a finite sequence of symbols a1 . . . an with ai ∈ Σ for
1 ≤ i ≤ n. Finite words are usually denoted by u, v, w, . . . . We denote by Σ∗

(resp. Σ+) the set of finite words (resp. finite non-empty words) over Σ. Given
a word w ∈ Σ∗, we denote by |w| the length of w. The empty word ε has the
length 0. A language L over an alphabet Σ is a subset of Σ∗.

We now define operations on words and languages for both finite and infinite
alphabets. The concatenation of two words u and v is the word u · v. Let
U ⊆ Σ∗ and V ⊆ Σ∗ denote languages. The concatenation of U and V is
the set U · V := {u · v | u ∈ U, v ∈ V }. The operator · is usually omitted.
Let L ⊆ Σ∗ denote a language, given L0 = {ε}, we define recursively the
language Ln = LLn−1. The Kleene closure of L is the language L∗ :=

⋃

n≥0 Ln.
Furthermore, the intersection of U and V is the set U∩V := {w | w ∈ U,w ∈ V }
and the complement of U is the set Σ∗ \ U , often denoted by U .

3.2 Finite Automata over Finite Alphabets

A language L ⊆ Σ∗ over a finite alphabet Σ is said to be regular if L is the
language recognized by a non-deterministic finite automaton.

Definition 3.1 A non-deterministic finite automaton (NFA) over an alphabet
Σ is of the form A = (Q,Σ,∆, q0, F ), where Q is a finite set of states, Σ is a

7



8 Chapter 3. Automata and M-L-Automata

finite alphabet, ∆ ⊆ Q× Σ ×Q is the transition relation, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. A run of A on a word w = a1 . . . an
is a sequence of states ρ = ρ(0) . . . ρ(|w|), such that ρ(0) = q0 and for every i,
with 0 ≤ i < |w|, (ρ(i), ai+1, ρ(i + 1)) ∈ ∆. The run is successful if ρ(|w|) is a
final state. A word w ∈ Σ∗ is accepted by A if and only if there is a successful
run of A on w. The language recognized by A is L(A) = {w ∈ Σ∗ | A accepts
w}.

An extension to regular languages L ⊆ Σ∗ are regular or automatic relations
of arity n of words over finite alphabets, for n ≥ 1. A finite synchronous n-tape
automaton reads finite words over Σ written on n-input tapes (cf. [EES69]).
The automaton simultaneously reads the words on each input tape, i.e. the
heads move at the same speed, processing one symbol per computation step.
Hence, all words need to have the same length. Therefore we use a padding
symbol in order to extend components if necessary.

Definition 3.2 The convolution of a tuple w = (u1, . . . , un) ∈ (Σ∗)n with
ui = ui1 . . . uiki is defined as 〈w〉 = 〈u1, . . . , un〉 with ℓ = max{|u1|, . . . , |un|} as
follows:

〈w〉 :=







u′11
...
u′n1






· · ·







u′1ℓ
...
u′nℓ






∈ ((Σ∪· {#})n)∗,

where u′ij = uij for j ≤ |ui|, otherwise u
′
ij = #. Note, that # must be a padding

symbol not belonging to Σ. We will write Σ# for Σ∪· {#}. Every 〈w〉 is word
over the alphabet (Σ#)

n.

We define the convolution of a relation R ⊆ (Σ∗)n to be the language
LR := {〈w〉 | w ∈ R}.

Note, that the convolution of a language, i.e. a relation with arity 1, is the
language itself.

Definition 3.3 A non-deterministic finite synchronous n-tape automaton over
an alphabet Σ is a non-deterministic finite automaton over the alphabet (Σ#)

n.
A relation R ⊆ (Σ∗)n is called automatic if its convolution LR is recognizable
by a non-deterministic finite synchronous n-tape automaton.

3.3 M-L-Automata

The automaton model, called M-L-automaton, we will now define recognizes
n-ary relations of finite words, for n ≥ 1 over finite as well as infinite alphabets.

For this purpose, we use synchronous n-tape automata in combination with
logical formulas as transition constraints. Recall, that to recognize n-ary re-
lations of finite words, the automaton works on the convolution of a tuple of
words, i.e. in every step an n-tuple of elements of the alphabet is processed.
Therefore a logical formula has n free variables to express properties of n-
tuples of elements of the alphabet. We specify the alphabet as the domain of a
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τ -structure M, so we can express properties of elements from the n-tuple using
a logic L speaking over the structure M. For ease of presentation, we call these
formulas M-L-formulas. Thus we can use an M-L-formula with n free variables
to describe the set of n-tuples of elements which lead from one state to another.
So, when reading the convolution of a tuple of words, in each step the n symbols
currently read are assigned to the n free variables. If the formula is true for
this assignment, the transition can be executed via this n-tuple.

Since M-L-automata work on the convolution of a tuple of words as intro-
duced in Definition 3.2, the logical formulas we use must be able to deal with
the padding symbol #. Therefore, we define, in addition to a τ -structure M

with domain Σ, the τ#-structure M#. Let Σ∪· {#} be the domain of M# and
τ# = τ ∪· {P#}, where P#(x) holds if and only if x = #. Each relational symbol
of τ has the same interpretation in M# as in M. Although, formally we use the
structure M#, we still speak of M-L-automata and M-L-formula to simplify
reading.

More formally, let M denote a relational structure with domain Σ and L

denotes a logic, which allows quantifications over elements, e.g FO or MSO
logic. An M-L-automaton is a non-deterministic finite synchronous n-tape
automaton, whose transitions are of the form (p, ϕ, q), where p, q are states of
the automaton, and ϕ(x1, . . . , xn) is aM-L-formula with n free variables. Given
an n-tuple of elements, a transition (p, ϕ, q) can be executed if ϕ is satisfied in
M# for the assignment of the n elements to the n free variables.

Definition 3.4 (M-L-automaton) Let Σ be an alphabet, let M denote a re-
lational structure with domain Σ, and let L denote a logic. An M-L-automaton
is of the form A = (Q,n,∆,M,L, q0, F ) where

• Q is a finite set of states,

• n ≥ 1 is the number of tapes,

• ∆ ⊆ Q × Fn × Q is the finite set of transitions, where Fn is the set of
M#-L-formulas with n free variables,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of terminal states.

Definition 3.5 Given an n-tuple w = (u1, . . . , un) of finite words over Σ and
an M-L-automaton A, a run of A on the convolution 〈w〉 of the tuple w is a
sequence of states ρ = ρ(0) . . . ρ(|〈w〉|) with ρ(0) = q0, and for every i < |〈w〉|
there exists an M#-L-formula ϕ(x1, . . . , xn) and (ρ(i), ϕ, ρ(i + 1)) ∈ ∆, such
that the following holds:

M# |= ϕ[u′1(i+1), . . . , u
′
n(i+1)].

The run is successful if ρ(|〈w〉|) is a final state. The convolution 〈w〉, which is
a word over (Σ#)

n, is accepted by A if there is a successful run of A on 〈w〉.
We denote by L(A) the set of words over (Σ#)

n accepted by A.
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Definition 3.6 Let n ≥ 1. A relation R ⊆ (Σ∗)n is M-L-recognizable or M-L-
automatic if and only if there exists an M-L-automaton A with n tapes such
that LR = L(A).

Example 3.7 At first, we consider simple examples. Let M = (N,+) where
+ denotes the graph of addition and L is fixed as first-order logic speaking over
M. The following relations are M-L-recognizable:

(1) The language L = {w ∈ N∗ | the symbols in w are alternatively even and
odd, starting with an even symbol} is M-L-recognizable. Consider the
M-L-automaton with two states q0, q1, where q0 is initial, both states are
terminal and the set of transitions is {(q0, ϕeven, q1), (q1, ϕodd, q0)} where
the first-order formulas are ϕeven(x) := ∃y y + y = x and ϕodd(x) :=
¬ϕeven(x). The automaton is depicted in Figure 3.1.

q0 q1

ϕeven

ϕodd

Figure 3.1: A simple M-L-automaton recognizing L

(2) In the previous example, we considered a language, now we consider a
relation. In this case the automaton reads the convolution letter by let-
ter, opposed to example (1). The relation R ⊆ N×N with (u, v) ∈ R if
there exists at least one position i, such that the i-th symbol of u equals
the i-th symbol of v. The following M-L-automaton recognizes R. The
automaton has two states q0, q1, where q0 is initial and q1 terminal. The
set of transitions is {(q0, ϕneq, q0), (q0, ϕeq, q1), (q1, ϕt, q1)} with first-order
formulas ϕeq(x, y) := (x = y), ϕneq(x, y) := (x 6= y) and ϕt(x, y) express-
ing a statement that is always true. The automaton is depicted in Figure
3.2

q0 q1
ϕeq

ϕneq ϕt

Figure 3.2: A simple M-L-automaton recognizing R

(3) The set of words over N that start with a 1 followed by arbitrarily many
0’s. Consider an M-L-automaton with two states q0, q1, where q0 is initial
and q1 terminal and two transitions (q0, ϕ0, q1), (q0, ϕ1, q1) with first-order
formulas ϕ0(x) := (x+x = x), and ϕ1(x) := ∀z(¬ϕ0(z) → ∃y(x+ y = z))
expressing that x = 0, resp. x = 1.

Example 3.8 Let us consider a structure with an uncountable domain. Let
M = (R,+) and fix L = FO. The relation R ⊆ R∗ ×R∗ defined by (u, v) ∈ R
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if and only if for every i the sum of the i-th symbol of u and v equals 0. The
relation R is recognized by an M-L-automaton with a single initial and terminal
state q and a single transition (q, ϕ, q), where ϕ(x, y) := ∃z(x+y = z∧z+z = z).

The following examples illustrate the limits of M-L-recognizable relations.

Example 3.9 Consider any structure M with an infinite domain Σ and any
logic L. Then, the relation L = {aa | a ∈ Σ} is notM-L-recognizable. We prove
this by contradiction. Assume A = (Q,n,∆,M,L, q0, F ) is an M-L-automaton
that recognizes L. Since there are only finitely many transitions leading from
the initial state q0 to other states and infinitely many words that are accepted
by A, we can choose two distinct words u, v ∈ L, such that the runs on u = aa
and v = bb starting from q0 pass through the same state q1 afterwards. This
means, there exists a transition (q0, ϕ(x), q1) such that the formula ϕ is satisfied
by both symbols a and b, i.e. M# |= ϕ[a] and M# |= ϕ[b]. Thus, we can build
an accepting run on ab /∈ L. This is a contradiction.

Example 3.10 LetM = (N, <) denote a structure and let L denotes any logic.
Then the set of words over N such that each symbol is greater then the previous
symbol is not M-L-recognizable. Let L denote this language. Again, assume
for a contradiction that the M-L-automaton A recognizes L. As is the previous
example, since L is infinite, we can pick two distinct words u, v ∈ L such that
the accepting runs on u, v have a state in common. In particular, we can pick
words u = u1 . . . uℓ and v = v1 . . . vℓ with v1 > u2 such that after reading u1
and after reading v1 the automaton is in the same state. Thus, we can build
an accepting run on v1u2 . . . uℓ /∈ L. Contradiction.

3.4 Closure Properties for M-L-recognizable Rela-

tions

In this section we show that the class of M-L-recognizable relations is closed
under well known closure properties. As a preparation, we provide a transfor-
mation from non-deterministic to equivalent deterministic M-L-automata.

Proposition 3.11 A non-deterministic M-L-automaton can be transformed
into an equivalent deterministic M-L-automaton.

Proof. The determinization of non-deterministic M-L-automata needs more
effort compared to the determinization of non-deterministic finite automata.
In [Bès08], a proof is sketched. We will follow the proof idea, but provide a full
proof. The construction is divided into three parts. At first, we need to find
a suitable set of formulas we can use as transition labels in the complement
automaton, such that only deterministic runs occur. Then, we replace the
formulas in A with our new suitable set of formulas. Subsequently, we apply
a powerset construction similar to the well-known powerset construction for
non-deterministic automata on A.
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In the first step, we define a set of formulas, which we can use as transition
labels in A′. We want A′ to be deterministic, thus the used formulas have to
fulfill two properties. (a) No two formulas can be satisfied by the same symbol
to obtain unambiguous runs and (b) also the set of formulas has to be complete
such that in each state for each symbol there exists a transition labeled by a
formula, such that the formula is satisfied by the symbol.

The desired formulas can be constructed as follows. Let ϕ1, . . . , ϕm denote
the formulas which appear in the transitions of A. Consider, for every subset
J ⊆ {1, . . . ,m}, the formula ψJ :=

∧

i∈J ϕi ∧
∧

i/∈J ¬ϕi. Indeed, the demanded
properties (a) and (b) are fulfilled:

(1) Consider two different sets J, K ⊆ {1, . . . ,m} and corresponding formulas
ψJ and ψK . Assume for a contradiction that there exists a symbol a such
that M# |= ψJ and M# |= ψK . Then, M# |= ψJ ∧ ψK . The formulas
differ at least in one member of the conjunction, say ϕi is a subformula of
ψJ and ¬ϕi is a subformula of ψJ . Hence, we have M# |= ϕi ∧¬ϕi which
is a contradiction.

(2) First, consider the case that there already exists a given formula ϕi in A
such that a symbol a ∈ (Σ#)

n satisfies ϕi in M#. Then, by construction
of the formulas ψJ there exists a Boolean combination ψJ , i ∈ J of all
formulas ϕ1, . . . , ϕm such that a satisfies ψJ in M#. Conversely, consider
the case that a symbol a ∈ (Σ#)

n satisfies none of the existing formulas
ϕi, then a satisfies the formula ψJ with J = ∅ which is a conjunction of
all ¬ϕi.

The next steps are to replace the transitions in A, such that the transition
labels consist of the formulas ψJ and hereafter apply a powerset construction,
similar to the classical case, which takes advantage of the newly introduced
formulas. We replace every transition (p, ϕ, q) ∈ ∆ with all transitions of the
form (p, ψJ , q) where i ∈ J and thus obtain A◦ with a new transition relation
∆◦. Let us now show, that A◦ still recognizes R. Therefore we show that a
transition from p to q in A◦ is executable via a symbol a if and only if there
exists a transition from p to q in A that is executable via a. There are two
cases we can distinguish:

(1) There exists a symbol a ∈ (Σ#)
n such that the transition (p, ϕi, q) ∈ ∆

of the unmodified automaton A is executable via a. Then M# |= ϕi, by
construction there exists a formula ψJ where i ∈ J ⊆ {1, . . . ,m} such
that M# |= ψJ and (p, ψJ , q) ∈ ∆◦.

(2) There exists a symbol a ∈ (Σ#)
n such that the transition (p, ϕi, q) ∈ ∆

of the unmodified automaton A is not executable via a. Then M# 6|= ϕi,
by construction every transition of the from (p, ψJ , q) ∈ ∆′ where i ∈ J
is not executable, because ϕi is a subformula of ψJ .

Thus, A◦ still recognizes R.
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Now we apply a powerset construction as follows. As above, let ϕ1, . . . , ϕm
denote the formulas which appear in the transitions of A. Consider, for ev-
ery subset J ⊆ {1, . . . ,m}, the formula ψJ :=

∧

i∈J ϕi ∧
∧

i/∈J ¬ϕi. Let A◦ =
(Q,n,∆◦,M,L, q0, F ) be the M-L-automaton modified as described in the sec-
ond step above. We obtain the M-L-automaton A′ = (Q′, n,∆′,M,L, q′0, F

′),
where

• Q′ = P(Q) (powerset of Q),

• q′0 = {q0},

• ∆′ ⊆ Q′ × Fn × Q′, where Fn is the set of M#-L-formulas with n free
variables in which for each P ⊆ Q and J ⊆ {1, . . . ,m}: (P,ψJ , S) with
S = {s | p ∈ P : (p, ψJ , s) ∈ ∆◦},

• F ′ = {P ⊆ Q | P ∩ F 6= ∅}.

In the resulting deterministic M-L-automaton A′ for every state q and every
formula ψJ there exists a single outgoing transition labeled ψJ .

We show the equivalence between the M-L-automaton A◦ and the deter-
ministic M-L-automaton A′.

Given a tuple w of words over Σ, we show that A◦ : q0
〈w〉
−−→ q if and only if

A′ : {q0}
〈w〉
−−→ S, q ∈ S by induction over the length of 〈w〉.

If |〈w〉| = 0, then 〈w〉 = ε and no transition is executed in A′ nor in A◦ and
both automata stay in their initial states, obviously q0 ∈ {q0}.

For the induction step consider |〈w〉| = n with 〈w〉 = ua with a ∈ (Σ#)
n

and u is a word over (Σ#)
n. In A◦ exists a run q0

〈w〉
−−→ q, i.e. a run q0

ua
−→ q.

Then there exists a state p ∈ Q such A◦ : q0
u
−→ p and A◦ : p

a
−→ q. By induction

hypothesis, there exists a run A′ : {q0}
u
−→ P, p ∈ P . The existence of a run

p
a
−→ q in A◦ implies the existence of a transition of the from (p, ψJ , q) ∈ ∆◦ in

A◦. By construction of ∆′ in A′ there exists a transition (P,ψJ , S) ∈ ∆′ with
q ∈ S, because (p, ψJ , q) ∈ ∆◦. Thus, there exists a run A′ : P

a
−→ S. All in all,

we obtain A′ : {q0}
u
−→ P

a
−→ S. Therefore, there exists a run A′ : {q0}

ua
−→ S

that is a run A′ : {q0}
〈w〉
−−→ S, q ∈ S.

What is left is to prove that L(A◦) = L(A′). Therefore, we show for all
tuples w of words: 〈w〉 ∈ L(A◦) iff 〈w〉 ∈ L(A′):

〈w〉 ∈ L(A◦) iff ∃q A◦ : q0
〈w〉
−−→ q and q ∈ F

iff A′ : {q0}
〈w〉
−−→ S, q ∈ S and S ∈ F ′, because S ∩ F 6= ∅

iff 〈w〉 ∈ L(A′)

�

Now we are ready to show that the class of M-L-recognizable relations is
closed under well known closure properties.

Proposition 3.12 The class of M-L-recognizable relations is closed under
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(1) union, (2) complementation, (3) intersection,

(4) projection,

(5) cylindrification.

Proof.

(1) The closure under union is analogous to the classical construction for
non-deterministic finite automata. Let A1 = (Q1, n,∆1,M,L, q10 , F1)
and A2 = (Q2, n,∆2,M,L, q20 , F2) denote M-L-automata. The union
automaton A = (Q,n,∆,M,L, q0, F ) merges A1 and A2 into a single
automaton with Q = Q1 ∪· Q2 ∪· {q0} where q0 is a new initial state,
∆ = ∆1 ∪ ∆2 ∪ {(q0, ψ, p) | (q10, ψ, p) ∈ ∆1 or (q20 , ψ, p) ∈ ∆2}, and
F = F1 ∪ F2.

(2) For a given relation R ⊆ (Σ∗)n recognized by an M-L-automaton
A = (Q,n,∆,M,L, q0, F ). The goal is to construct an M-L-automaton
that recognizes (Σ∗)n \ R. The idea is to determinize A and swap fi-
nal states with non-final states and conversely as in the classical con-
struction for complement automata. In Proposition 3.11, we presented
a way to construct an equivalent deterministic M-L-automaton. Let
A′ = (Q′, n,∆′,M,L, q′0, F

′) denote the deterministic M-L-automaton.
Now we replace F ′ by Q′ \ F ′ in A′ and thus obtain the complement
automaton A′′ that recognizes (Σ∗)n \R.

(3) Regarding the closure under intersection, we do not give a direct construc-
tion for an M-L-automaton, but instead the closure under intersection is

derived from the equivalence of L ∩ S to L ∪ S. The construction is
possible, because we already proved the closure under union and comple-
mentation above.

(4) Projection. Let R ⊆ (Σ∗)n denote a relation recognized by an M-L-
automaton A. We replace every transition (p, ϕ(x1, . . . , xn), q) by
(p,∃xnϕ(x1, . . . , xn), q) in A and thus obtain an M-L-automaton A′ that
recognizes the projection of R over the first n-1 components.

(5) Cylindrification. Let R ⊆ (Σ∗)n denote a relation recognized by an M-L-
automaton A with n tapes. Let R′ ⊆ (Σ∗)n+1 denote the cylindrification
of R, which adds another component to R. It suffices to add another tape
to A, so that a head can read the new component. As the new component
adds no information to R, the transitions remain unchanged.

�
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3.5 Decision Problems for M-L-recognizable Rela-

tions

Regarding decision problems for M-L-recognizable relations, we shall see that
the decidability of those problems is dependent on the decidability of the L-
theory of M.

Proposition 3.13 The emptiness problem for M-L-recognizable relations is
decidable if and only if the L-theory of M is decidable.

Proof. In order to decide the emptiness problem, we have to determine whether
there exists a word which is the label of a successful path, i.e. a path from the
initial state to a final state. Unlike in the classical case, the existence of a
transition (p, ϕ, q) ∈ ∆ in an M-L-automaton A = (Q,n,∆,M,L, q0, F ) does
not necessarily imply the existence of an n-tuple of elements of Σ# such that its
elements satisfy ϕ in M#. Since such transitions will never be executed by A,
they have to be removed before a reachability test can take place. Whether an
M-L-formula ϕ is satisfiable in M# is decidable if and only if the L-theory of
M# is decidable. Since L-Th(M#) reduces to L-Th(M), the emptiness problem
is equivalent to the decidability of L-Th(M).

Let A = (Q,n,∆,M,L, q0, F ) be an M-L-automaton. We define the tran-
sition graph G := (Q,E) where E = {(p, q) ∈ Q×Q | ∃(a1, . . . , an) ∈ (Σ#)

n :
M# |= ϕ[a1, . . . , an] and (p, ϕ, q) ∈ ∆}.

Thus, we have L(A) 6= ∅ if and only if there is a path from q0 to a final
state q in the transition graph G.

This can be checked by applying a graph search algorithm, e.g. apply depth-
first search from q0 in order to determine the set Q0 of states reachable from
q0. Thus, Q0 ∩ F 6= ∅ if and only if L(A) 6= ∅.

�

Regarding the examples given in the previous section, the emptiness problem
was decidable for all examples.

As a consequence of Proposition 3.12 and Proposition 3.13 we get the fol-
lowing result.

Proposition 3.14 The inclusion- and the equivalence problem for M-L-
recognizable relations are decidable if and only if the L-theory of M is decidable.

Proof. Given M-L-automata A and B, we have to decide whether L(A) ⊆
L(B) resp. whether L(A) = L(B). Regarding the inclusion problem, L(A) ⊆
L(B) is equivalent to L(A) ∩ L(B) = ∅. Due to the closure under union and
complementation we can construct an M-L-automaton that recognizes L(A) ∩
L(B) and then apply the emptiness test, which is decidable if and only if the
L-theory of M is decidable.

Regarding the equivalence problem, L(A) = L(B) is true if and only if both
L(A) ⊆ L(B) and L(B) ⊆ L(A) are true. Thus, L(A) = L(B) is decidable if
and only if the L-theory of M is decidable.
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Chapter 4

Logic and M-L-Automata

In this chapter, we connect M-L-automata and monadic second-order logic
(MSO). Our main goal is to show that there exists a general equivalence between
M-L-recognizable relations over both finite and infinite alphabets and MSO-
definability.

Regarding finite alphabets, a general equivalence between languages recog-
nized by finite automata and monadic second-order logic over words was found
in the early 1960s. Büchi, Elgot and Trakhtenbrot proved that MSO-definable
languages describe exactly the class of regular languages, a proof can be found
in [Tho97].

Theorem 1 ([Büc60],[Elg61],[Tra62]) A language L ⊆ Σ+ is regular if and
only if it is MSO-definable. The transformation in both directions is effective.

In the first section we introduce monadic second-order logic over words,
suitable for finite and infinite alphabets. In the second section, we generalize
the equivalence between recognizability and definability to any alphabet, finite
or infinite.

4.1 Monadic Second-Order Logic over Words

In this section, we introduce a logical formalism that allows us to express prop-
erties of words over any alphabet, finite or infinite. A suitable logical formalism
has to express relations between letter positions and properties of those letters.

In order to characterize a language over a finite or infinite alphabet Σ by a
logical formalism, we combine two logics. The logic MSO is suitable to describe
relations between positions in a word, e.g. “position x occurs before position y”
or “the word is of even length”. Of course, we also want to express properties
that the letters on the positions should have. In MSO we can use predicates to
describe properties of letters, for these predicates we make use of another logic
L. The idea is that over any alphabet Σ, given a structure M with domain
Σ and a logic L, we can describe properties of letters using M-L-formulas.
Therefore, we introduce for any M-L-formula a new predicate that expresses
“the letter at position x has the property defined by the M-L-formula ϕ”, i.e.

17
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the symbol at position x satisfies ϕ in M. Thus, we combine the logics MSO
and L by adding to the MSO formalism unary predicates Pϕ for every M-L-
formula ϕ. We call this new logical formalism M-L-MSO. We first define the
syntax of M-L-MSO-formulas and then define the semantic.

Definition 4.1 (M-L-MSO) Given a structure M with domain Σ and a logic
L. We define M-L-MSO as MSO-logic with signature τ = (<, S, (Pϕ)ϕ∈M#-L,
min, max), where

• min, max are constant symbols,

• < is the natural ordering relation symbol,

• S is the successor relation symbol, and

• Pϕ is a unary relation symbol associated to every M#-L-formula ϕ.

To determine the semantics of M-L-MSO-formulas, we need a model to
interpret them in. At first, we define how we represent a word as a model,
called word model or word structure.

Definition 4.2 (Word model) Given a tuple w = (u1, . . . , un) of words over
Σ, such that at least one of the ui is non-empty. We define the structure

w = (dom(w),min,max, <, S, (Pϕ)ϕ∈M#-L)

where

• dom(w) = {1, . . . , |〈w〉|} is a finite subset of N, interpreted as positions
in the word,

• min = 1, max = |〈w〉|,

• < is interpreted as the natural ordering relation restricted to dom(w),

• S is interpreted as the successor relation restricted to dom(w),

• Pϕ = {i ∈ dom(w) | M# |= ϕ[u′1i, . . . , u
′
ni]} for all M-L-formulas ϕ

The unary relations Pϕ are called letter predicates. So, Pϕ collects all letter
positions of w which carry a letter that satisfies the property described by ϕ.

To interpret the truth value of an M-L-MSO-formula
ψ(x1, . . . , xm,X1, . . . ,Xn) with free variables x1, . . . , xm and X1, . . . ,Xn

we need a word model w and additionally m positions k1, . . . , km and n sets of
positions K1, . . . ,Kn. Altogether, the complete model of a M-L-MSO-formula
is defined as follows:
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Definition 4.3 Let ψ(x1, . . . , xm,X1, . . . ,Xn) be an M-L-MSO-formula with
free variables. Let w be a tuple of words, k1, . . . , km ∈ dom(w) and
K1, . . . ,Kn ⊆ dom(w). We say

(w, k1, . . . , km,K1, . . . ,Kn) |= ϕ(x1, . . . , xm,X1, . . . ,Xn)

if ψ holds in w for the assignment of xi = ki and Xj = Kj for 1 ≤ i ≤ m and
1 ≤ j ≤ n. We also write:

w |= ψ[k1, . . . , km,K1, . . . ,Kn]

We now take a look at an example which illustrates the combination of
MSO-logic and the logic L speaking over a structure M.

Example 4.4 Let w = 010011, M = (N, <) and L = FO. We use the M-L-
formulas ϕ0(x) = ¬(∃y(y < x)) and ϕ1(x) = ∃y(ϕ0(y) ∧ ¬(∃z(y < z ∧ z < x)))
to express the letter properties that x = 0, resp. x = 1. Out of these M-L-
formulas we define the predicates Pϕ0

and Pϕ1
, where Pϕ0

(x) expresses that the
symbol at position x is 0, and Pϕ1

(x) expresses that the symbol at position x
is 1.

Now, we consider the following M-L-MSO-formulas, talking about proper-
ties of the positions in w, that use the predicates described above

• “positions x1, x2 are successive positions, both being 0”
ψ(x1, x2) = S(x1, x2) ∧ Pϕ0

(x1) ∧ Pϕ0
(x2)

• “all positions in X1 are 0 and at least one of those positions has a prede-
cessor, which is 1”
ψ′(x1,X1) = ∀x(X1(x) → Pϕ0

(x)) ∧ ∃y(x1 < y ∧ Pϕ1
(y) ∧X1(y))

• “every position, which is 1 has a predecessor which is 0”
ψ′′ = ∀x(∃y(Pϕ1

(x) → (Pϕ0
(y) ∧ y < x)))

Then we have, for example:

(w, 3, 4) |= ψ(x1, x2)

(w, 1, 2) 6|= ψ(x1, x2)

(w, 2, {1, 3, 4}) |= ψ′(x1,X1)

(w, 5, {1, 3, 4}) 6|= ψ′(x1,X1)

w |= ψ′′

An M-L-MSO-sentence, i.e. formulas which do not have any free variables, is
interpreted in a word model without e.g. any additional sets of positions. All
tuples of words w such that w |= ψ form the language defined by an M-L-MSO-
sentence ψ.
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Definition 4.5 Let M be a structure with domain Σ and ϕ be an M-L-MSO
sentence. We set L(ϕ) = {w ∈ (Σ∗)n | w |= ϕ} as the language defined by ϕ.
We say a relation R ⊆ (Σ∗)n is M-L-MSO definable if there is a M-L-MSO
sentence ϕ with LR = L(ϕ).

Example 4.6 Let M = (N,+) and fix L = FO. For comparison we use the
languages and relations considered in Example 3.7.

(1) the set L ⊆ N∗ of word whose symbols are alternatively even and
odd, starting with an even symbol is M-L-MSO definable by the sen-
tence ∀x∀y

(

S(x, y) → (Pϕeven(x) ↔ Pϕodd
(y))

)

∧Pϕeven(min), where
ϕeven(x) := ∃y y + y = x and ϕodd(x) := ¬ϕeven.

(2) the relation R ⊆ N∗ × N∗ with (u, v) ∈ R if there exists at least one
position i, such that the i-th symbol of u equals the i-th symbol of v is
M-L-MSO definable by the sentence ∃iPϕeq (i), where ϕeq(x, y) := (x = y).

(3) the set of words over that start with a 1 followed by arbitrarily many 0’s is
M-L-MSO definable by the sentence Pϕ1

(min)∧ ∀x(min 6= x→ Pϕ0
(x)),

where ϕ0(x) expresses that x = 0 and ϕ1(x) expresses that x = 1.

4.2 The Equivalence Theorem

At this point, we are ready to present a translation from any M-L-automaton
to an M-L-MSO-formula and vice versa. Thereby, we show the equivalence
between M-L-recognizable relations and M-L-MSO-definable relations.

First, we show the direction from a given M-L-automaton to a M-L-MSO-
formula.

Proposition 4.7 Let A be an M-L-automaton, then there exists an M-L-
MSO-sentence ψA with L(A) = L(ψA).

Proof. The proof is a straightforward adaptation of the classical case for finite
alphabets, shown by Büchi in [Büc60]. Additionally, we deal with relations over
infinite alphabets. Given an M-L-automaton A = ({1, . . . ,m}, n,∆,M,L, 1, F )
we have to construct an M-L-MSO sentence ψA such that any word model w
satisfies ψA if and only if A accepts the convolution 〈w〉 of the tuple w of words.
Accordingly, the sentence ψA has to express the existence of a successful run
of A. Therefore, we introduce m sets X1, . . . ,Xm such that Xi encodes the set
of position where a run in A passes through the state i. The purpose of ψ is
to set constraints on these sets such that they describe a successful run. There
are four properties, which a sentence has to combine in a conjunction in order
to express a successful run of A:

• The automaton is only at one state at a time. Thus, the sets X1, . . . ,Xm

form a partition of dom(w). The respectiveM-L-MSO-formula is given by

ψPartition(X1, . . . ,Xm) = ∀x
(

∨m
i=1Xi(x) ∧

∧

i 6=j,1≤i,j≤m¬
(

Xi(x) ∧Xj(x)
)

)
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• The run starts in the initial state. This is easily expressed by X1(min).

• For all positions x, y such that y is successor of x a transition is executed.
We write

∀x∀y
(

S(x, y) →
∨

(i,ϕ,j)∈∆ (Xi(x) ∧ Pϕ(x) ∧Xj(y))
)

• The last executed transition, after reading the letter at position max,
leads to a final state. This is expressed by

∨

∃j∈F :(i,ϕ,j)∈∆

(

Xi(max) ∧ Pϕ(max)
)

)

Finally, we combine these formulas to a conjunction.

ψA = ∃X1 . . . ∃Xm

(

ψPartition(X1, . . . ,Xm) ∧ X1(min)

∧ ∀x∀y
(

S(x, y) →
∨

(i,ϕ,j)∈∆ (Xi(x) ∧ Pϕ(x) ∧Xj(y))
)

∧
∨

∃j∈F :(i,ϕ,j)∈∆

(

Xi(max) ∧ Pϕ(max)
)

)

Then A accepts 〈w〉 if and only if w |= ψA

�

To show the direction from a given M-L-MSO-formula to an M-L-
automaton, we use a simpler variant of M-L-MSO-logic, in which first-order
variables are omitted. Elements are represented by singletons.

Definition 4.8 The language of M-L-MSO0-logic is built up from atomic for-
mulas of the form

• X ⊆ Y ,

• X ⊆ Pϕ,

• Sing(X) meaning X is a singleton,

• Succ(X,Y ) meaning X,Y are singletons {x}, {y} with S(x, y),

• X < Y meaning X,Y are singletons {x}, {y} with x < y.

as well as the connectives ¬,∨,∧, and the set quantifiers ∃ and ∀.

Remark 4.9 Every M-L-MSO-formula can be transformed to an equivalent
M-L-MSO0-formula.

Proof. We show this by induction over the structure of the given M-L-MSO-
formula. We have to eliminate all occurrences of first-order variables, say x, y
are first-order variables and Z is a set variable. In atomic formulas, we have to
rewrite occurrences of first-variables as follows:
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• “x = y” is rewritten as “Sing(X) ∧ Sing(Y ) ∧ X = Y ” with “X = Y ”
short for “X ⊆ Y ∧ Y ⊆ X”.

• “Z(x)” is rewritten as “Sing(X) ∧X ⊆ Z”.

• “Pϕ(x)” is rewritten as “Sing(X) ∧X ⊆ Pϕ”

• “x < y” is rewritten as “Sing(X) ∧ Sing(Y ) ∧X < Y ”

• “S(x, y)” is rewritten as “Sing(X) ∧ Sing(Y ) ∧ Succ(X,Y )”

Let φ and ψ be M-L-MSO-formulas. Assume φ′ and ψ′ are the equivalent
M-L-MSO0-formulas to φ and ψ, respectively. For the remaining induction step,
we have to consider the formulas “∃xψ” and “∀xψ” where x is a free variable
in ψ. Then ∃xψ is translated to ∃X(Sing(X) ∧ ψ′) and ∀xψ is translated to
∀X(Sing(X)∧ψ′). The cases ¬φ, φ∧ψ and φ∨ψ are translated to ¬φ′, φ′ ∧ψ′

and φ′ ∨ ψ′, respectively.

�

Example 4.10 The M-L-MSO-formula

ψ(Z) = ∃x(Pϕ(x) ∧ ∀y(y < x→ Z(y)))

is rewritten as

∃X(Sing(X) ∧X ⊆ Pϕ ∧ ∀Y (Sing(Y ) ∧ Y < X → Y ⊆ Z)).

Now that we have introduced M-L-MSO0, we identify an M-L-MSO0-
formula with a language that shall be recognized by an equivalent M-L-
automaton. Recall that an M-L-MSO0-formula ψ(X1, . . . ,Xk) with free vari-
ables X1, . . . ,Xk is interpreted in a word model w and k subsets K1, . . . ,Kk ⊆
dom(w). To code such models as a single word that can be handled by an
automaton we represent the sets K1, . . . ,Kk by bit vectors. For every position
i ∈ dom(w) we represent the information whether i ∈ K1, i ∈ K2, . . . , i ∈ Kk

by a bit vector with k entries such that the j-th entry is 1 if and only if i ∈ Kj

for 1 ≤ j ≤ k.

Definition 4.11 A formula ψ(X1, . . . ,Xk) is interpreted in a model
(w,K1, . . . ,Kk) with Ki ⊆ dom(w), where w is the word model of a tuple
w = (u1, . . . , un) ∈ (Σ∗)n of words. We represent the model by a word over the
alphabet (Σ#)

n × {0, 1}k :




















u′11
...
u′n1
c11
...
ck1









































u′12
...
u′n2
c12
...
ck2





















· · ·





















u′1ℓ
...
u′nℓ
c1ℓ
...
ckℓ





















∈ ((Σ#)
n × {0, 1}k)∗

and Ki is the set of positions j where i-th bit component cij = 1 iff j ∈ Ki.
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Now, we can identify an M-L-MSO0-formula ψ(X1, . . . ,Xk) with a language
over the alphabet (Σ#)

n × {0, 1}k .

Example 4.12 Let M = (N,+). Consider the M-L-MSO0-formula
ψ(X1,X2) = ∀X

(

Sing(X) ∧ (X ⊆ Pϕ ↔ X ⊆ X1) ∧ (¬X ⊆ Pϕ ↔ X ⊆ X2)
)

and the M-L-formula ϕ(x) = ∃y(y + y = x), where ϕ(x) expresses that x is an
even number. Thus ψ(X1,X2) expresses that in a word, every letter position
such that the letter at this position is even is in X1, otherwise if a letter is odd
the respective position is in X2. Let w = 2 0 1 1 12, then we have for example:

(w, {1, 2, 5}, {3, 4}) |= ψ(X1,X2)

(w, {1, 2, 3}, {3, 4, 5}) 6|= ψ(X1,X2)

These two models are represented as follows, in the first case we have K1 =
{1, 2, 5},K2 = {3, 4}; in the second case we have K1 = {1, 2, 3},K2 = {3, 4, 5}.





2
1
0









0
1
0









1
0
1









1
0
1









12
1
0



 satisfies ψK1

K2




2
1
0









0
1
0









1
1
1









1
0
1









12
0
1



 does not satisfy ψK1

K2

Thus, L(ψ) is the set of words over Σ# × {0, 1}2, such that if the letter
component is even only the first bit component is 1, otherwise only the second
bit component is 1.

At this point, we have introduced all necessary notions to translate any
given M-L-MSO-formula into an equivalent M-L-MSO-automaton.

Proposition 4.13 Let ϕ be an M-L-MSO sentence, then there exists an M-L-
automaton Aψ with L(ψ) = L(Aψ).

Proof. We construct for every M-L-MSO-formula an equivalent M-L-MSO0-
formula and proceed by induction over the structure of MSO0-formulas.
For any MSO0-formula ψ(X1, . . . ,Xk) we have to construct an equivalent
M-L-automaton Aψ over (Σ#)

n × {0, 1}k. Formally, every transition la-
bel ϕ(x1, . . . , xn, y1, . . . , yk) has free variables x1, . . . , xn and free variables
y1, . . . , yk. Recall, that a representation of a model (w,K1, . . . ,Kk) is the input
for the automaton. Therefore a word over (Σ#)

n × {0, 1}k is read, where the
upper n elements of each letter form the convolution 〈w〉 of w. These upper n
elements are assigned to the free variables x1, . . . , xn. The lower k elements are
the bit vectors, which are assigned to the free variables y1, . . . , yk.

Now, we specify M-L-automata for the atomic M-L-MSO0-formulas, in the
transitions of these automata, we use theM-L-formulas ϕ0(x) and ϕ1(x), where
ϕ0(x) expresses that x = 0 and ϕ1(x) expresses that x = 1.
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• Sing(Xi):

Given a non-empty word over (Σ#)
n×{0, 1}k , the M-L-automaton checks

that the i-th bit component is 1 exactly once.

q0 q1
ϕ1(yi)

ϕ0(yi)

ϕ0(yi)

• Xi ⊆ Xj

Given a non-empty word over (Σ#)
n×{0, 1}k , the M-L-automaton checks

that whenever the i-th bit component is 1, the j-th bit component is 1 as
well.

q0

ϕ1(yi) → ϕ1(yj)

• Xi ⊆ Pϕ

Given a non-empty word over (Σ#)
n×{0, 1}k , the M-L-automaton checks

that whenever the i-th bit component is 1, the letter vector satisfies the
M-L-formula ϕ, which defines the letter predicate Pϕ.

q0

ϕ1(yi) → ϕ(x1, . . . , xn)

• Succ(Xi,Xj)

Given a non-empty word over (Σ#)
n×{0, 1}k , the M-L-automaton checks

that immediately after the i-th bit component is 1 the j-th bit component
is 1 as well.

q0 q1 q2
ϕ1(yi) ∧ ϕ0(yj) ϕ0(yi) ∧ ϕ1(yj)

ϕ0(yi) ∧ ϕ0(yj)

ϕ0(yi) ∧ ϕ0(yj)
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• Xi < Xj

Given a non-empty word over (Σ#)
n×{0, 1}k , the M-L-automaton works

like the M-L-automaton specified for Succ(Xi,Xj), but after the i-th bit
component is 1, the position where the j-th bit component is 1 may occur
arbitrarily many positions later.

q0 q1 q2
ϕ1(yi) ∧ ϕ0(yj) ϕ0(yi) ∧ ϕ1(yj)

ϕ0(yi) ∧ ϕ0(yj)

ϕ0(yi) ∧ ϕ0(yj) ϕ0(yi) ∧ ϕ0(yj)

For the induction step, it suffices to consider the connectives ¬ and ∨, and
the existential set quantifier ∃, since the connectives ∧,→, and the universal set
quantifier ∀ are definable in terms of the functionally complete set of Boolean
operators {¬,∨} and the existential set quantifier ∃.

Consider the M-L-MSO0-formulas ψ1(X1, . . . ,Xk) and ψ2(X1, . . . ,Xk) and
the equivalent M-L-automata Aψ1

, resp. Aψ2
. For the negation, we can con-

struct an equivalent M-L-automaton for ¬ψ1 by constructing the complement
automaton of Aψ1

. Regarding the connective ∨, the formula ψ1 ∨ψ2 is equiva-
lent to the M-L-automaton that recognizes L(A1)∪L(A2), which we obtain by
constructing the union automaton of Aψ1

and Aψ2
. At last we handle the ex-

istential quantifier. Consider the M-L-MSO0-formula ψ′ = ∃Xkψ(X1, . . . ,Xk).
To the formula ψ(X1, . . . ,Xk) we construct an equivalent M-L-automaton Aψ.
Let L ⊆ ((Σ#)

n × {0, 1}k)+ be the language defined by ψ(X1, . . . ,Xk) and
recognized by Aψ and L′ ⊆ ((Σ#)

n × {0, 1}k−1)+ denotes the projection of
L recognized by the projection automaton A′. The projection automaton is
constructed from the M-L-automaton for ψ(X1, . . . ,Xk) by replacing every
transition (p, ϕ(x1, . . . , xn, y1, . . . , yk), q) by (p,∃ykϕ(x1, . . . , xn, y1, . . . , yk), q).
Then the formula ψ′ defines the language L′.

We show L(A′) = L(ψ′). Given a model (w,K1, . . . ,Kk−1), we represent
the model by b1b2 . . . bℓ

b1b2 . . . bℓ :=





















u′11
...
u′n1
c11
...

c(k−1)1









































u′12
...
u′n2
c12
...

c(k−1)2





















· · ·





















u′1ℓ
...
u′nℓ
c1ℓ
...

c(k−1)ℓ





















∈ ((Σ#)
n × {0, 1}k−1)+

as defined in Definition 4.11.
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b1b2 . . . bℓ satisfies ∃Xkψ(X1, . . . ,Xk)

iff there exists Kk ⊆ dom(w), such that
(w,K1, . . . ,Kk−1,Kk) |= ψ(X1, . . . ,Xk)

iff there exists ck1, . . . , ckℓ ∈ {0, 1}, such that
[

b1
ck1

] [

b2
ck2

]

· · ·

[

bℓ
ckℓ

]

satisfies ψ(X1, . . . ,Xk)

iff b1b2 . . . bℓ is the projection of some u ∈ L(A)

iff b1, . . . , bℓ ∈ L(A′).

This completes the proof of Proposition 4.13.

�

We presented a way to translate any given M-L-automaton to an M-L-
MSO-formula and vice versa. Combining Proposition 4.7 and Proposition 4.13
we immediately obtain the following result.

Theorem 2 A relation R ⊆ (Σ∗)n with n ≥ 1 is M-L-MSO definable if and
only if it is M-L-recognizable. The transformation in both directions is effective.

As a consequence of Theorem 2 we derive the following theorem.

Theorem 3 Satisfiability and equivalence of M-L-MSO-formulas over word
models are decidable problems if and only if the L-theory of the structure M

is decidable.

Proof. Given M-L-MSO sentences ψ and φ, construct corresponding M-L-
automata Aψ and Aφ, respectively.

• ψ is satisfiable iff L(ψ) 6= ∅ iff L(Aψ) 6= ∅

• ψ ≡ φ iff L(ψ) = L(φ) iff L(Aψ) = L(Aφ)

Recall, as stated in Proposition 3.13 and Proposition 3.14, the emptiness
problem and the equivalence problem is decidable if and only if the L-theory of
the structure M is decidable.

�



Chapter 5

Extension to Büchi Automata

The purpose of this chapter is to extend the results of the previous chapter to
infinite words over infinite alphabets. First, we introduceM-L-Büchi automata,
an automaton model that recognizes relations of ω-words over both finite and
infinite alphabets. Thereafter, we show the equivalence between MSO-logic
over ω-words and M-L-Büchi automata.

5.1 Notation

A ω-word over an alphabet Σ is a infinite sequence α = α(0)α(1) . . . with
α(i) ∈ Σ for all i ∈ N. Usually, ω-words are denoted by α, β, γ . . . . We denote
by Σω the set of ω-words over Σ. An ω-language L is a subset of Σω.

The concatenation of the word u and the ω-word α is the ω-word uα. Let
U ⊆ Σ∗ denote a language and L ⊆ Σω denotes an ω-language. The con-
catenation of U and L is defined to be the set UL := {uα | u ∈ U,α ∈ L}.
Furthermore, to the language U ⊆ Σ∗ we define the ω-language Uω := {α ∈
Σω | α = u1u2 . . . with ui ∈ U}.

5.2 Definition of M-L-Büchi Automata

Finite ω-automata are finite automata equipped with an acceptance condition
for infinite words. There are different possibilities to define the acceptance
condition. In this thesis, we consider the Büchi condition [Büc62] and the
Muller condition[Mul63], the respective ω-automata are called Büchi automata
andMuller automata. In this section, we recall the definition of Büchi automata,
introduce M-L-Büchi automata, and in Section 5.5 we recall the definition of
Muller automata and introduce M-L-Muller automata.

Definition 5.1 A non-deterministic Büchi automaton is of the form

B = (Q,Σ,∆, q0, F )

with a finite set of states Q, a finite alphabet Σ, a transition relation ∆ ∈
Q× Σ×Q, an initial state q0 ∈ Q, and a set of final states F .

27
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Definition 5.2 Let B = (Q,Σ, q0,∆, F ) be a Büchi automaton. A run of B
on an ω-word α is an infinite sequence of states ρ = ρ(0)ρ(1) . . . with ρ(0) = q0
and (ρ(i), α(i), ρ(i + 1) for i ≥ 0. A run ρ is successful if there exist infinitely
many i such that ρ(i) ∈ F . We say, B accepts α if and only if there exists a
successful run of B on α.

Definition 5.3 The ω-language recognized by a Büchi-automaton B is defined
to be the set L(B) = {α ∈ Σω | B accepts α}. An ω-language is called Büchi
recognizable if a corresponding Büchi automaton B with L = L(B) exists.

Let us extend this automaton model such that it recognizes relations of ω-
words over finite and infinite alphabets. Again, in order to recognize relations
of ω-words, we define the convolution of a tuple of ω-words. Compared to the
convolution of a tuple of finite words, we can omit a padding symbol, since all
words are of infinite length. Also, the use of an extended structure is no longer
necessary.

Definition 5.4 The convolution of a tuple of ω-words α = (α1, . . . , αn) ∈
(Σω)n with αi = αi(0)αi(1) . . . is defined as follows:

〈α〉 :=







α1(0)
...

αn(0)













α1(1)
...

αn(1)






· · · ∈ (Σn)ω

We define the convolution of a relation R ⊆ (Σω)n of ω-words to be the
ω-language LR := {〈α〉 | α ∈ R}.

An M-L-Büchi automaton is of the same form as an M-L-automaton, we
just change the acceptance condition to Büchi acceptance.

Definition 5.5 Let Σ be an alphabet and let M denote a structure with do-
main Σ. An M-L-Büchi automaton is of the form

B = (Q,n,∆,M,L, q0, F )

with a finite set of states Q, n ≥ 1 tapes, a transition relation ∆ ⊆ Q×Fn×Q,
where Fn is the set of M-L-formulas with n free variables, an initial state
q0 ∈ Q, and a set of terminal states F ⊆ Q.

Definition 5.6 Let B = (Q,n,∆,M,L, q0, F ) be an M-L-Büchi automaton
and let α = (α1, . . . , αn) be an n-tuple of ω-words over Σ. A run of B on the
convolution 〈α〉 is an infinite sequence of states ρ = ρ(0)ρ(1) . . . with ρ(0) =
q0 and for every i ≥ 0 exists an M-L-formula ϕ(x1, . . . , xn) and a transition
(ρ(i), ϕ, ρ(i + 1)) such that the following holds:

M |= ϕ[α1(i), . . . , αn(i)]

A run ρ of B on 〈α〉 is successful if there exist infinitely many i such that
ρ(i) ∈ F . We say, B accepts 〈α〉 if there exists a successful run of B on 〈α〉. We
denote by L(B) the set of ω-words over Σn accepted by B.
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Definition 5.7 Let n ≥ 1. A relation R ⊆ (Σω)n of ω-words is said to beM-L-
Büchi recognizable if there exists an M-L-Büchi automaton B with n tapes such
that LR = L(B).

Proposition 5.8 The emptiness problem for M-L-Büchi recognizable relations
is decidable if and only if the L-theory of M is decidable.

Proof. The proof is similar to the proof of the decidability of the emptiness
problem for M-L-recognizable relations in Proposition 3.13. Again, we omit
all transitions which are labeled by a non-satisfiable formula ϕ and afterward
apply a standard non-emptiness test for Büchi automata.

Let B = (Q,n,∆,M,L, q0, F ) denote an M-L-Büchi automaton. We define
the transition graph G := (Q,E) where E = {(p, q) ∈ Q× Q | ∃(a1, . . . , an) ∈
Σn : M |= ϕ[a1, . . . , an] and (p, ϕ, q) ∈ ∆}.

We have L(B) = ∅ if and only if there is a strongly connected component
(SCC) in G reachable from q0 which contains a final state. This can be checked
by applying depth-first search from q0 in order to determine the set Q0 of states
reachable from q0. Then apply Tarjan’s SCC-algorithm on Q0 to obtain a list of
all SCCs over Q0. If at least one of those SSCs contains a final state L(B) 6= ∅.

�

5.3 The Equivalence Theorem for M-L-Büchi Au-

tomata

In [Büc62], Büchi showed that the results of Theorem 1 are also applicable to
infinite words. Equally, we can extend the result of Theorem 2 to the case
of relations over infinite words, i.e. we present a way to translate M-L-Büchi
automata to M-L-MSO-formulas and vice versa.

Analogously, to a word model for a tuple w of finite words as given in
Definition 4.2, we define a word model for a tuple α of ω-words. Given a tuple
α of ω-words over a finite or infinite alphabet, the constant max is omitted,
since the domain of an ω-word is always N.

Definition 5.9 (Word model) Given a tuple α = (α1, . . . , αn) of words over
Σ. We define the structure

α = (N,min, <, S, (Pϕ)ϕ∈M-L)

To speak over word models of ω-words, we use M-L-MSO as defined in
Section 4.1 and just omit the constant symbol max.

The proof of the equivalence between M-L-Büchi recognizable languages
and M-L-MSO definable ω-languages is mostly analogous to the proof of The-
orem 2. The main difficulty lies in proving the closure of M-L-Büchi recog-
nizable languages under complementation. There are two different approaches;
one is to use a special representation of M-L-Büchi recognizable languages,
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the other approach is to switch to another class of ω-automaton, namely de-
terministic M-L-Muller automaton, where closure under complementation is
easily achieved by replacing the system of final states by its complement. In
this section, we show the closure under complementation by following Büchis
original approach used in [Büc62], a way to translate M-L-Büchi automaton to
deterministic M-L-Muller automaton is presented in Section 5.5.

First, we consider the translation from any given M-L-Büchi automaton to
an M-L-MSO-formula.

Proposition 5.10 Let B be an M-L-Büchi automaton, then there exists an
M-L-MSO sentence ψ with L(B) = L(ψ).

Proof. Given an M-L-Büchi automaton B = ({1, . . . ,m}, n,∆,M,L, q0, F ) we
have to construct an M-L-MSO sentence ψB with L(B) = L(ψB). The transla-
tion is mostly done as in Proposition 4.7, only the last property of the conjunc-
tion has to be changed to match the Büchi acceptance condition. Therefore,
a corresponding M-L-MSO-formula has to express that again and again a fi-
nal state is visited. Consider the following formula that expresses the desired
property:

∀x∃y(x < y ∧
∨

i∈F

Xi(y)
)

Altogether, we obtain the M-L-MSO sentence

ψPartition(X1, . . . ,Xm) = ∀x
(

∨m
i=1Xi(x) ∧

∧

i 6=j,1≤i,j≤m¬
(

Xi(x) ∧Xj(x)
)

)

ψB = ∃X1 . . . ∃Xm

(

ψPartition(X1, . . . ,Xm) ∧ X1(min)

∧ ∀x∀y
(

S(x, y) →
∨

(i,ϕ,j)∈∆ (Xi(x) ∧ Pϕ(x) ∧Xj(y))
)

∧ ∀x∃y(x < y ∧
∨

i∈F Xi(y)
)

)

Then B accepts 〈α〉 if and only if α |= ψB.

�

To show the direction from a given M-L-MSO-formula to an M-L-Büchi
automaton, we prove some related results beforehand.

Proposition 5.11 Let U ⊆ (Σn)∗ denote an M-L-recognizable language, let
K,L ⊆ (Σn)ω denote M-L-Büchi recognizable ω-languages, then

(1) Uω is M-L-Büchi recognizable.

(2) U ·K is M-L-Büchi recognizable.

(3) K ∪ L is M-L-Büchi recognizable.
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Proof. For (1), consider an M-L-automaton A = (Q,n,∆,M,L, q0, F ) that
recognizes U . The idea is to let a run directly continue from the initial state
after a final state is visited. Therefore, transitions leading to F should return
to q0 instead and q0 serves a as final state. To avoid problems if a return to q0
is already possible, we transform A as follows, such that the initial state has
no incoming transitions.

• Introduce a new initial state q′0 with transition (q′0, ϕ, q) for all transition
(q0, ϕ, q). The state q′0 is added to the final states F if q0 is a final state.

Now that there are no incoming transitions in the initial state in A, we
construct an M-L-Büchi automaton B that recognizes Uω as follows

• Every transition (p, ϕ, q) with q ∈ F is replaced by (q, ϕ, q0).

• Fix the set of final states F to q0 only.

For (2), let B1 = (Q1, n,∆1,M,L, q10 , F1) and B2 = (Q2, n,∆2,M,L, q20 , F2)
be M-L-Büchi automata that recognize K and L, respectively. The idea of
the construction is that every transition leading to a final state in B1 should
also lead to the initial state q20 in B2. Additionally, if q10 is final, it should
be possible that a run begins in q20. Consider the M-L-Büchi automaton B =
(Q1 ∪Q2, n,∆,M,L, q10 , F ) with

• ∆ = ∆1 ∪∆2 and in addition

• for every transition (p, ϕ, q) ∈ ∆1 with q ∈ F add the transition (p, ϕ, q20)

• if q10 ∈ F , then for every transition (q20 , ϕ, q) ∈ ∆2 add the transition
(q10, ϕ, q).

For (3) we can use the same construction for union automata as for M-L-
automata, as detailed in Section 3.4.

�

Proposition 5.12 The class of M-L-Büchi recognizable relations is closed un-
der complementation.

Proof. Let B = (Q,n,∆,M,L, q0, F ) be the M-L-Büchi-automaton that is to
be complemented. The construction is divided into 6 parts.

(1) We introduce a finite set of types or transition profiles, and assign a type
to each finite word. The types completely determine the behavior of B on
a finite word.

(2) Every infinite word can be divided into a sequence of finite words; the
resulting type sequence t0t1t2 . . . determines the behavior of B on an
infinite word, thus the type sequence is enough to decide whether an
infinite word is accepted or not.
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(3) For each type t the set of words Ut with this type form an M-L-Büchi
recognizable language.

(4) Every infinite word can be divided into a sequence of finite words using
only two different types, such that its type sequence is of the simple form
t0t

ω
1 .

(5) This simple type sequence is used to derive a representation of the com-
plement as

⋃

Ut0U
ω
t1

(6) Finally, we can construct a complement automaton based on the repre-
sentation, since every component of it is M-L-Büchi recognizable.

In step (1), we assign to every finite word a type. Therefore we use the
notion of transition profiles. For a finite word u ∈ (Σn)∗ and p, q ∈ Q we write:

• B : p
u
−→ q if there is a run on u from p to q in B.

• B : p
u
−→
F
q if there is a run on u from p to q in B that visits an accepting

state.

A transition profile t(u) of a finite word u ∈ (Σn)∗ is a directed graph with
vertex set Q and edges as follows:

• There is an edge from p to q if B : p
u
−→ q;

• An edge from p to q is labeled F if B : p
u
−→
F
q.

In step (2), we use transition profiles to determine whether an ω-word is
accepted by B. A factorization of an ω-word α is a division into an infinite
sequence of finite words u0, u1, u2, . . . such that α = u0u1u2 . . . . A factor-
ization u0, u1, u2, . . . of an ω- word α induces a transition profile sequence
t(u0)t(u1)t(u2) . . . . This sequence is sufficient to decide whether B accepts
α or not.

An infinite sequence t0t1t2 . . . of transition profiles is called accepting if
there is a sequence of states q0q1q2 . . . such that q0 is the initial state and for
every i there is an edge in the transition profile from qi to qi+1 and infinitely
many of these edges are labeled F . In this case, the sequence q0q1q2 . . . is
the path of an accepting run in an M-L-Büchi automaton. Thus, a transition
profile sequence of an ω-words α contains all necessary information to decide
whether B accepts α or not.

Remark 5.13 Let α ∈ (Σn)ω and α = u0u1u2 . . . is an arbitrary factorization
of α into finite words. Then α ∈ L if and only if t(u0)t(u1)t(u2) . . . is an
accepting sequence of transition profiles.

Note that there are only finitely many different transition profiles, since
there are only finitely many possibilities to have edges between two states of a
given vertex set Q.
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In step (3) we construct for a transition profile t an M-L-Büchi automaton
that recognizes the set Ut of all finite words with type t.

Given an M-L-Büchi automaton B over Σn, let TP denote the set of all
transition profiles of B, and let NTP denote the set of non-accepting pairs
of transition profiles. Formally, NTP = {(t0, t1) ∈ TP × TP | t0t

ω
1 is non-

accepting}. For a transition profile t ∈ TP define the set Ut = {u ∈ (Σn)+ |
t(u) = t} of finite words with type t.

In the next steps, we see how we can combine different sets Ut to a repre-
sentation of the complement. Accordingly, we can construct the complement
automaton as a combination of different automata recognizing the sets Ut. Note
that the original automaton B does not necessarily read every possible input
letter, i.e. there might be a letter such that none of the formulas on the transi-
tions is satisfied. However, the complement automaton has to be able to read
every possible input letter. Thus each of the automata recognizing the sets Ut
has to be able to read each input letter. Therefore we introduce a new set of
formulas such that every possible input is covered by a formula. Recall the
set of formulas we introduced for the powerset construction for M-L-automata
in Section 3.4. These formulas fulfill our purpose, namely that for each input
letter a formula exists such that the formula is satisfied by the letter. Let
ϕ1, . . . , ϕm denote the formulas which occur in the transitions of B. For every
subset J ⊆ {1, . . . ,m}, we introduce the formula ψJ :=

∧

i∈J ϕi ∧
∧

i/∈J ¬ϕi.
We define the transition profile automaton (TPA) for B, the TPA is itself

an M-L-Büchi automaton with the following properties:

• Q = TP

• q0 = t(ε) is the initial state

• Q×FJ ×Q, where FJ is the set of all formulas ΨJ

Let u ∈ (Σn)+ and a = (a1, . . . , an) ∈ Σn. The transitions are of the form
δ(t(u), ψJ , t(ua)), where M |= ψJ [a1, . . . , an]

Now we can use the TPA to construct M-L-Büchi automata that recognize
the sets Ut, respectively. For each transition profile t the TPA recognizes Ut if t
is the only final state. The transitions are constructed such that after reading a
input word u ∈ (Σn)+ the automaton is in the state t(u). Thus, we can define
t as final state to recognize Ut.

In step (4), we show that every infinite word can be cut into finite words,
such that the resulting type sequence is a periodic factorization of the form
t0t

ω
1 . This can be proven using a theorem of Ramsey.

Theorem 4 (Ramsey [Ram30]) Let X be a countably infinite set such that
each undirected edge {x, y} over X has a color from a finite set C of colors.
Then there is an infinite subset Y of X such that all edges over Y have the
same color.

Lemma 5.14 For each α ∈ (Σn)ω there is a factorization α = u0u1u2 . . . with
t(ui) = t(uj) for all i, j ≥ 1.
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Proof. Let N denote the positions in α. Let X = N. Let the colors C = TP ,
where TP denotes the set of transition profiles of the original automaton B.
Every edge {i, j} is colored by its corresponding transition profile t(α[i, j]), for
i < j. By Ramsey’s Theorem there exists a set of positions Y = {i1, i2, i3, . . . }
such that there is a sequence i1 < i2 < i3 . . . with t(α[ij , ik]) = t(α[iℓ, im]) for
all 1 ≤ j < k, ℓ < m.

Hence, choosing u0 = α[0, i1] and uj = α[ij , ij+1] for j ≥ 1 yields a periodic
factorization.

�

In step (5), we use the result from step (4) to derive a simple representation
of the complement. Consider the M-L-Büchi automaton B, let TP denote the
set of transition profiles of B. As stated by Lemma 5.14, every infinite word
has a type sequence of the form t0t

ω
1 with t0, t1 ∈ TP . Thus, it is sufficient to

find the set of pairs (t0, t1) of transitions profiles, for which the sequence t0t
ω
1

is non-accepting. Thus, we can represent the complement as follows.

Lemma 5.15 The complement of L(B) is

(Σn)ω \ L(B) =
⋃

(t0,t1)∈NTP

Ut0U
ω
t1

.

Finally, in step (6) we construct the complement automaton of B. As a result
of Lemma 5.15 in step (3), it suffices to construct for each pair (t0, t1) ∈ NTP
M-L-Büchi automata, which recognize Ut0U

ω
t1 and construct the union automa-

ton. The constructions for the respective automata are given in Proposition
5.11.

�

As a consequence of Proposition 5.11 and Proposition 5.12 we obtain the
following result.

Proposition 5.16 The inclusion- and the equivalence problem for M-L-Büchi
recognizable relations are decidable if and only if the L-theory of M is decidable.

Now, we are ready to give a translation from any M-L-MSO sentence to an
equivalent M-L-Büchi automaton.

Proposition 5.17 Let ψ be an M-L-MSO sentence, then there exists an M-L-
Büchi-automaton B with L(ψ) = L(B).

Proof. Given an M-L-MSO sentence ψ, the idea to proceed by induction over
the structure of ψ. Since we want to avoid handling first-order variables, we
switch to M-L-MSO0 and construct an equivalent M-L-MSO0 sentence φ and
proceed by induction over the structure of φ. For the induction basis, we con-
sider the atomic formulas Xi ⊆ Xj , Sing(Xi), Succ(Xi,Xj), Xi < Xj and



5.4 Consequences and Applications in Model Checking 35

Xi ⊆ Pϕ and specify M-L-Büchi automata that recognize the sets of ω-words
defined by these formulas. These automata are of the same form as the M-L-
automata given in the proof of Proposition 4.13. For the induction step it
suffices to consider the connectives ∨,¬ and the existential set quantifier ∃,
because ∧,→ and ∀ are definable in terms of them. Given the formulas ψ1 and
ψ2, let B1 and B2 denote the respective corresponding M-L-Büchi automata.
For the disjunction ψ1∨ψ2 we can use the same construction we used in Propo-
sition 4.13, the same holds for the existential set quantifier ∃. Regarding the
negation, we have seen in Proposition 5.12 how to construct the complement
automaton of B1.

�

As a consequence of Proposition 5.10 and Proposition 5.17, we obtain the
following result.

Theorem 5 A relation R ⊆ (Σω)n with n ≥ 1 of ω-words is M-L-MSO de-
finable if and only if it is M-L-Büchi-recognizable. The transformation in both
directions is effective.

5.4 Consequences and Applications in Model Check-

ing

As a consequence of Theorem 2 we derive the following theorem.

Theorem 6 Satisfiability and equivalence of M-L-MSO-formulas over word
models are decidable problems if and only if the L-theory of the structure M

is decidable.

Proof. Given M-L-MSO sentences ψ and φ and construct corresponding M-L-
Büchi automata Bψ and Bφ, respectively.

• ψ is satisfiable iff L(ψ) 6= ∅ iff L(Bψ) 6= ∅

• ψ ≡ φ iff L(ψ) = L(φ) iff L(Bψ) = L(Bφ)

Recall, as stated in Proposition 5.8 and Proposition 5.16, the emptiness
problem and the equivalence problem is decidable if and only if the L-theory of
the structure M is decidable.

�

A well-known application of the connection between automata and logic is
the verification of specifications of finite-state systems modeled by finite au-
tomata (“model checking”).

The model checking problem is the following: Given a system and a specifi-
cation of the behavior of the system, does every run of the system satisfy the
specification?
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We introduce a structure for a finite system model, where infinitely many
actions may lead from one state to another, while the state set remains finite.
The set of actions, which lead from one state to another are specified via log-
ical formulas. We call this form of transitions bundled transitions because one
formula can cover a (finite or infinite) set of actions.

Definition 5.18 A transition system with bundled transitions over a structure
M with logic L is of the form

K = (S, (Eϕ)ϕ∈M-L)

with a finite set S of states and binary transition relations Eϕ ⊆ V × V for
all M-L-formulas ϕ with n ≥ 1 free variables.

Definition 5.19 Let K = (S, (Eϕ)ϕ∈M-L) denote a transition system with bun-
dled transitions and s ∈ S a state of K. A path through (K, s) is a sequence
s0s1s2 . . . where s0 = s and (si, si+1) ∈ Eϕ for i ≥ 0. Corresponding label se-
quences are all ω-words of the form α = α(0)α(1)α(2) . . . where (si, si+1) ∈ Eϕ
and α(i) satisfies ϕ. All label sequences through (K, s) define an ω-language.

We use the logic M-L-MSO to specify the constrains of a transition system
with bundled transitions.

Definition 5.20 A transition system (K, s) with initial state s satisfies an
M-L-MSO formula ψ if all ω-words in the ω-language defined by all label se-
quences through (K, s) satisfy ψ.

A transition system with bundled transitions and initial state is easily trans-
formed into an M-L-Büchi automaton. Given (K, s) with K = (S, (Eϕ)ϕ∈M-L),
construct an M-L-Büchi automaton BK,s = (S, n,∆,M,L, s, S) where every
state is a final state with (s, ϕ, s′) ∈ ∆ iff (s, s′) ∈ Eϕ for all s, s′ ∈ S.

We can now state the model checking problem using transition system with
bundled transitions and M-L-MSO as follows:

Model checking problem: Given a transition system with bundled transi-
tions with initial state (K, s) and anM-L-MSO-formula ψ, decide whether
(K, s) satisfies ψ.

To solve the model checking problem, we check for error scenarios, i.e. we
ask whether there is a label sequence through (K, s) which does not satisfy
ψ. The solution to this problem can be computed algorithmically. First, we
represent (K, s) by an M-L-Büchi automaton BK,s which recognizes all label
sequences through (K, s), using the construction from above. Secondly, we
construct an automaton B¬ψ, which recognizes all label sequences, which do not
satisfy ψ, using Theorem 5. Hence, the error scenarios are exactly those label
sequences which are accepted by both automata. The construction of an M-L-
Büchi automaton which recognizes L(BK,s)∩L(B¬ψ) is possible, since we showed
in the proof of Theorem 5 the closure under union and complementation for
M-L-Büchi recognizable languages, thus the closure under intersection follows
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as a direct consequence. If L(BK,s)∩L(B¬ψ) is empty, no label sequence violates
the specification ψ. So, given a system (K, s) and a formula ψ, to solve the
model checking problem we have to do the following:

(1) Construct the M-L-Büchi automaton BK,s

(2) Construct the M-L-Büchi automaton B¬ψ

(3) Construct the M-L-Büchi automaton B that recognizes L(BK,s)∩L(B¬ψ)

(4) Apply the non-emptiness test on B; if L(B) = ∅, then (K, s) does not
satisfy ψ, otherwise (K, s) satisfies ψ.

Regarding the emptiness test in (4), we recall, as stated in Proposition 5.8,
that the emptiness problem is only decidable if and only if the L-theory of the
structure M is decidable.
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5.5 Determinization of M-L-Büchi Automata

The purpose of this section is to transform non-deterministic M-L-Büchi au-
tomata into equivalent deterministic M-L-Muller automata. Another well-
known way to determize Büchi automata is to employ a change of the ac-
ceptance condition towards Muller automata. The Muller acceptance condition
is more restricted as the Büchi condition as it specifies which states should be
visited infinitely often, and in contrast to the Büchi condition, which not. A
key theorem of the theory of finite ω-automata is McNaughton’s Theorem:

Theorem 7 ([McN66]) A Büchi automaton can be transformed effectively
into an equivalent deterministic Muller automaton.

McNaughton’s Theorem was also proven by Safra in [Saf88], for a com-
prehensive proof of McNaughton’s Theorem using Safra’s construction see e.g.
[Tho97, Rog02]. First, we introduce deterministic M-L-Muller automata and
then extend the result of McNaughton’s Theorem to M-L-Büchi and M-L-
Muller automata following Safra’s construction.

Definition 5.21 Let Inf(ρ) = {q ∈ Q | q occurs infinitely often in ρ}.

Definition 5.22 A finite deterministic Muller automaton is of form

M = (Q,Σ, δ, q0,F)

with a finite set of states Q, a finite alphabet Σ, a transition function δ :
Q × Σ → Q, an initial state q0 ∈ Q for 1 ≤ i ≤ k, and a system of final state
sets F = {F1, . . . , Fk} with Fi ⊆ Q. A run ρ is successful iff Inf(ρ) ∈ F .

Now, we extend this automaton model such that it recognizes relations
of ω-words over finite and infinite alphabets. As in the case of M-L-Büchi
automata, deterministic M-L-Muller automata work on the convolution of a
tuple of ω-words as defined in Definition 5.4.

Definition 5.23 Let Σ be an alphabet (finite or infinite) and let M denote a
structure with domain Σ. A finite deterministic M-L-Muller automaton is of
the form

M = (Q,n, δ,M,L, q0,F)

with a finite set of states Q, n ≥ 1 tapes, a transition function δ : Q×Fn → Q,
where Fn is the set of M-L-formulas with n free variables, an initial state
q0 ∈ Q, and a system of final state sets F = {F1, . . . , Fk} with Fi ⊆ Q for
1 ≤ i ≤ k. A run ρ is successful iff Inf(ρ) ∈ F .

Let us take a look at an example, which illustrates that the powerset con-
struction applied to a non-deterministic M-L-Büchi automaton does not al-
ways result in an equivalent deterministic M-L-Büchi automaton recognizing
the same relation.
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Example 5.24 Given a structure M = (N,+) and L = FO. The set of ω-
words over N such that from some point onwards only 0’s occur is recognized
by the M-L-Büchi automaton depicted in Figure 5.1 with first-order formulas
ϕ1(x) := (x = x) and ϕ2(x) := (x+ x = x).

q0 q1
ϕ2

ϕ1 ϕ2

Figure 5.1: A non-deterministic M-L-Büchi automaton.

Now we apply the powerset construction for infinite alphabets that we intro-
duced in Section 3.4 to the M-L-Büchi automaton. Recall that in the powerset
construction for infinite alphabets we have to construct a set of formulas such
that the resulting powerset automaton is deterministic. Therefore we used all
Boolean combinations of the formulas that appeared in the original automaton.
In this case we obtain the formulas ψ1 := (ϕ1 ∧ ϕ2), ψ2 := (ϕ1 ∧ ¬ϕ2), ψ3 :=
(¬ϕ1 ∧ ϕ2) and ψ4 := (¬ϕ1 ∧ ¬ϕ2). The resulting automaton is depicted in
Figure 5.2. As we can see, the automaton accepts any ω-word with infinitely
many occurrences of 0’s, thus in particular including ω-words with infinitely
many occurrences of other letters. As a conclusion we see that the powerset
construction is not an appropriate method to construct equivalent deterministic
M-L-Büchi automata.

{q0}

∅

{q0, q1}

ψ1, ψ3

ψ2

ψ4 ψ4

ψ2

ψ1, ψ3

ψ1, ψ2, ψ3, ψ4

Figure 5.2: The powerset construction for infinite alphabets applied to the
M-L-Büchi automaton from Figure 5.1.

Now, we present a transformation from M-L-Büchi automata to determin-
istic M-L-Muller automata yielding equivalent deterministic M-L-Muller au-
tomata.

Theorem 8 An M-L-Büchi automaton can be transformed effectively into an
equivalent deterministic M-L-Muller automaton.

We shall use Safra’s construction with only a slight adaptation to deal with
infinite alphabets. Before proving the theorem let us take a look at why the
powerset construction fails in case of M-L-Büchi automata and informally de-
scribe Safra’s construction.
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In the powerset construction (for both finite automata and M-L-automata),
the powerset automaton uses macrostates, i.e. subsets of states in the au-
tomaton, that contain the momentarily reachable states of the original non-
deterministic automaton. Let B be a non-deterministic M-L-Büchi automaton
and let B′ be the corresponding powerset automaton. An accepting run in the
powerset automaton passes infinitely often trough a macrostate which contains
some final state from B. If B′ is equivalent to B we can follow the accepting run
in B. Therefore we would have to pick a sequence of states from the encountered
macrostates such that this sequence forms an accepting run in B. This might
be impossible, since for a run on a finite word ending on a final state in B, there
might not be an ω-word such that the run can be continued successfully from
the final state. Whereas the same finite word leads to a macrostate R in the
powerset automaton which, although it contains a final state and thus counts
for accepting, can only be successfully continued in the original automaton B
starting from some other non-final state in q ∈ R.

Safra’s construction can be seen as a generalized powerset construction
which overcomes this weakness by treating occurrences of final states sepa-
rately. In this construction, states of the automaton are no longer macrostates
but sets of macrostates, organized in a tree structure called Safra tree, whose
nodes are labeled with sets of states of the M-L-Büchi automaton. Following
a run on an ω-word in a non-deterministic M-L-Büchi automaton B, the root
of a Safra tree collects all momentarily reachable states of B. If final states are
encountered in any macrostate, they are split off and introduced as a new child
node. This allows us to keep track of how a run is continued after it passed
through a final state. To proceed to the next Safra tree in the run we have
to compute the sets of states reachable via the next input letter. Therefore
in Safra’s construction the classical powerset construction is applied to each
node of a Safra tree. At this point we need a minor adjustment of Safra’s con-
struction. Since we have to deal with infinite alphabets, we use the powerset
construction adapted for infinite alphabets as introduced in Section 3.4 instead
of the classical powerset construction. We proceed in the same way as in Safra’s
construction. Safra trees constructed this way will lead to unbounded trees. In
order to use these trees as states for a deterministic automaton, we need a finite
set of Safra trees. Safra trees of bounded size are obtained by performing two
merge operations: States occurring in several brother macrostates only remain
in the oldest brother. Nodes with empty macrostates are deleted, except the
root node. If the union of brother macrostates equals the macrostate of their
parents, then all child nodes and its descendants are deleted and the former
parent is marked “!”.

5.5.1 Preparations

We recall some known results from Safra’s construction that we shall use in the
proof of Theorem 8.

Definition 5.25 A Safra tree over a set of states Q is an ordered directed
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finite tree with node names in {1, . . . , 2|Q|}, where each node is labeled by a
non-empty macrostate, i.e. a subset R ⊆ Q. The label R = ∅ is only allowed in
the root node. Further, a node can be marked “!”, then the label of a node is
the pair (R, !). Safra trees satisfy two conditions:

(1) Brother macrostates are disjoint.

(2) The union of brother macrostates is a proper subset of their parent
macrostate.

Remark 5.26 ([Rog02]) The number of nodes in a Safra tree over Q is
bounded by |Q|. The height of a Safra tree is at most |Q| − 1.

Let P
w
 R with P,R ⊆ Q denote that ∀r ∈ R : ∃ p ∈ P such that

B : p
w
−→ r.

Remark 5.27 ([Tho97]) Let

R0
u1
 P1

v1
 R1

u2
 P2

v2
 R2 . . . Pi

vi
 Ri

⊆ = ⊆ = ⊆ =

F1
v1
 Q1 F2

v2
 Q2 Fi

vi
 Qi

where Fi is the subset set of all final states of Pi. Then for all r ∈ Ri there
exists a p ∈ R0, such that B reaches from p via input u1v1u2v2 . . . uivi state r
with at least i visits in final states.

Remark 5.28 ([Tho97]) Let R0
u1v1
 R1!

u2v2
 R2! . . . Ri!

ui+1vi+1
 . . . as de-

fined in Remark 5.27 starting in R0 = {q0}. Then there is a successful run of
the non-deterministic M-L-Büchi automaton B on u1v1u2v2 . . . .

5.5.2 Safra’s Construction Adapted to Infinite Alphabets

To define a deterministic M-L-Muller automaton we need a suitable set of
formulas; a complete set of formulas such that only deterministic runs on ev-
ery input are possible. Therefore we rely on the formulas introduced in the
construction of deterministic M-L-automata as detailed in Section 3.4. Given
the M-L-Büchi automaton B = (Q,n,∆,M,L, q0, F ), let ϕ1, . . . , ϕm denote
the formulas which appear in the transitions of B. Consider, for every sub-
set J ⊆ {1, . . . ,m}, the formula ψJ :=

∧

i∈J ϕi ∧
∧

i/∈J ¬ϕi and replace every
transition (p, ϕi, q) ∈ ∆ with all transitions of the form (p, ψJ , q) where i ∈ J .

Now, we define the M-L-Muller automaton M = (Q′, n, δ,M,L, q′0,F)
where

• Q′ is the set of Safra trees over Q.

• q′0 is the Safra tree consisting of a root node labeled {q0} only.

• The value of the transition function δ(s, ψ) for a given Safra tree s and a
formula ψJ as above is computed in 6 steps.
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(1) Remove all marks “!” in the Safra tree s.

(2) For every node v with label R such that R∩F 6= ∅, create a new node
v′ and add v′ as youngest child node labeled with R ∩ F . Choose a
free number from {1, . . . , 2|Q|} as node name for v′. Since at most
one child node is introduced for every node, the set {1, . . . , 2|Q|} is
sufficient for denoting node names, as the number of node trees is
bounded by |Q|.

(3) Apply the powerset construction to each node label, i.e. replace each
node label R by the set {q ∈ Q | ∃r ∈ R : (r, ψJ , q) ∈ ∆}.

(4) horizontal merge: For every node v with label R and state q ∈ R,
such that q also occurs in an older brother node, remove all occur-
rences of q in v and its subtree.

(5) Remove all nodes with empty labels (except the root node).

(6) vertical merge: For every node v whose label is equal to the union of
the labels of its sons, remove all descendants of v and mark v with
“!”

• A set S ⊆ Q′ of Safra trees is in F if some node name appears in each
Safra tree s ∈ S, and in at least one s the label of this node is marked
“!”.

Note, that step (3) differs from the classical Safra construction, since we
used the powerset construction adapted to infinite alphabet as introduced in
Section 3.4.

Exemplary computation of δ(s, ψ1):

Safra tree s Step 1 Step 2 Step 3

1 | {q0, q1}

2 | {q1}

1 | {q0, q1}

2 | {q1}

1 | {q0, q1}

2 | {q1} 3 | {q1}

4 | {q1}

1 | {q0, q1}

2 | {q1} 3 | {q1}

4 | {q1}

Step 4 Step 5 Step 6

1 | {q0, q1}

2 | {q1} 3 | ∅

4 | {q1}

1 | {q0, q1}

2 | {q1}

4 | {q1}

1 | {q0, q1}

2 | {q1}−!

Figure 5.3: Steps from Safra’s construction.
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Example 5.29 We apply Safra’s construction to the non-deterministic M-L-
Büchi automaton from Example 5.24. The resulting automaton is depicted
in Figure 5.4. The employed formulas ψ1, ψ2, ψ3, ψ4 in the transitions are de-
fined as in Example 5.24. Figure 5.3 gives an example on how to compute the
transition function δ: The Safra tree is depicted after the execution of each
computation step. If a step modifies the Safra tree, it is highlighted.

1− {q0}
1− {q0, q1}

|
2− {q1}

1− {q0, q1}
|

2− {q1}−!
1− ∅

ψ1, ψ3

ψ2

ψ4 ψ1, ψ3

ψ2

ψ4

ψ1, ψ3ψ1, ψ2, ψ3, ψ4

Figure 5.4: Safra’s construction applied on the automaton of Figure 5.1.

Indeed, this automaton accepts the ω-language defined in Example 5.24,
e.g. the ω-word (10)ω passes infinitely often trough the initial state, which
is not included in the system of final states. Thus we can see that Safra’s
construction applied on the automaton of Figure 5.1 yields an equivalent M-L-
Muller automaton, whereas the powerset construction fails in this case.

With the presented construction and the results from the previous section,
we are ready to prove the correctness of Safra’s construction adapted to infinite
alphabets.

Proof of Theorem 8. We have to show that L(B) = L(M).

First, we show L(B) ⊇ L(M). Let the constructed M-L-Muller automaton
M accept α. Since M is deterministic there exists a unique run ρ′ on α, i.e.
Inf(ρ′) ∈ F . Therefore there exist some node name v such that v appears in
all Safra trees of Inf(ρ′). Consequently, v appears in every Safra tree — from
a certain point on —and is marked “!” infinitely often. Say s1, s2, . . . are the
Safra trees that occur in the run ρ′, with si < sj for i < j with i, j ∈ N and
v appears — from a certain point on — in each tree and is marked “!”. Let
R1!, R2!, . . . denote their labels.

Then R0
u1v1
 R1!

u2v2
 R2! . . . Ri!

ui+1vi+1
 . . . with R0 = {q0} is a macrostate

sequence as defined in Remark 5.27: In case a node v carries the marker “!”,
in the Safra construction, we had to apply step 6. Therefore, it is necessary
that v was a parent node, which implies that at some point a non-empty subset
of final states was split off in step 2 of the Safra construction. Hence, then as
stated by Remark 5.28, B accepts α.

Now we show L(B) ⊆ L(M). Let α ∈ L(B). We have to prove the existence
of a run ρ′ on α of the constructed M-L-Muller automaton such that there is a
node v in the Safra trees of ρ′ that — from a certain point on — is a node of all
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Safra trees in ρ′ and is marked “!” again and again. These two requirements
satisfy the Muller acceptance condition, because v is marked infinitely often
in ρ′ and since Q′ is a finite set, there exists some Safra tree in Inf(ρ′) with v
marked “!” which occurs infinitely often in ρ. Also, any Safra tree without v
is not in Inf(ρ′), because from a certain point on v is a node of all Safra trees
in ρ′. Thus, Safra trees without v occur only finitely many times. Then ρ′ is
accepting and we obtain α ∈ L(M).

Say q ∈ F occurs infinitely often in the run ρ on α of B. As there exists
an accepting run of B, the root of all Safra trees is non-empty, since the root
macrostate of the i-th Safra tree in ρ′ contains ρ(i).

In the simplest case, the root is marked “!” infinitely often, then the proof
is complete.

If not, we have to consider another candidate for v. Then — from a certain
point on — the state q appears in the macrostate of the youngest son, because q
is a final state and was passed onto a child node in step 2 of Safra’s construction
or it appears in an older brother of the youngest son, due to horizontal merge
operations. This can only happen finitely many times, since brother macrostate
are disjoint and a proper subset of their parent macrostate. Therefore every
node in a Safra tree has only finitely many sons as stated by Remark 5.26.
Eventually, q stays in the macrostate of some fixed node, this node will never
be deleted by step 6 of Safra’s construction, because otherwise the root would
be marked “!” again. If this node is marked “!” infinitely often, the proof is
complete. Otherwise, continue with this son in the same way as with the root
above. Eventually, we must find a node which is marked “!” infinitely often in
which q occurs infinitely often, since the height of Safra trees is bounded, as we
have seen in Remark 5.26. Thus, M accepts α.

�



Chapter 6

Application to Monadic Chain

Logic

In this chapter we present an application to monadic chain logic. Over struc-
tures where the notion of chains is meaningful, like tree structures, chain logic
is a fragment of monadic second order logic in which set quantifications are
restricted to chains. In [Tho92] it was shown that an extension of chain logic
over the infinite binary tree by the equal level predicate that connects two ver-
tices on the same tree level is decidable. We will further extend this result to
infinitely branching trees. Moreover we add to this logical framework a connec-
tion between sibling sets, i.e. the children of a particular node. First, we recall
the proof of the decidability of chain logic with the equal level predicate over
the infinite binary tree.

6.1 Chain Logic over the Infinite Binary Tree T2

Let us consider the tree structure T2 = ({0, 1}∗, S0, S1, E) which describes the
infinite binary tree with the two successor relations S0, S1, and the equal level
predicate E. The successor relation S0(x, y) (respectively S1(x, y)) holds if and
only if y directly succeeds x following the left (respectively right) branch. The
binary equal level predicate holds if and only if two vertices of a tree are on the
same tree level. More formally we have:

• S0(u, v) :⇔ v = u0, S1(u, v) :⇔ v = u1,

• E(u, v) :⇔ |u| = |v|.

An infinite path is a infinite sequence v0, v1, . . . of finite bit words, starting
at the root ε. Every vi+1 is the successor of vi in terms of S0, S1. A chain is a
subset of a path, i.e. a linearly ordered subset of the universe.

Referring to chains, we can speak about the structure T2 with equal level
predicate using a fragment of MSO-logic, in which monadic second order quan-
tifications are restricted to chains. We call this system chainE-logic.

45



46 Chapter 6. Application to Monadic Chain Logic

Theorem 9 ([Tho92] ) The chainE-theory of T2 = ({0, 1}∗, S0, S1, E) with
equal level predicate is decidable.

We claim that there is a reduction of the chainE-theory of T2 to the monadic
second-order theory of (N,+1), i.e. to the monadic theory S1S of one successor
which is decidable, see [Büc62].

For the proof it is convenient to use a simpler variant of chain logic of
the same expressiveness, which replaces first-order variables by second order
variables ranging over singletons. We call this variant chain0,E-logic, which has
the following atomic formulas:

• X ⊆ Y (“X is a subset of Y ”),

• Sing(X) (“X is a singleton”),

• S0(X,Y ) (resp. S1(X,Y )) (“X,Y are singletons {x}, {y} and we have
S0(x, y) (resp. S1(x, y))”),

• E(X,Y ) (“X,Y are singletons {x}, {y} and E(x, y) holds”).

Every chainE-formula can easily be rewritten as a chain0,E -formula. This
is done analogous to the translation of MSO-formulas to MSO0-formulas as
presented in Section 4.2.

As a preparation let us encode a chain C in ({0, 1}∗, S0, S1, E) by a pair
(αC , βC) of ω-words over {0, 1}. We only allow infinite paths. The idea is that
the sequence αC = αC(0)αC (1) . . . codes the path of which C is a subset, the
sequence βC = βC(0)βC(1) . . . codes membership in C along the path. We can
distinguish between three cases.

(1) C = ∅, then αC = βC = 0ω.

(2) C is finite, let C = {w1, . . . , wk}, wi ∈ {0, 1}∗ and ε ≤ w1 < · · · < wk,
then we define αC = wk0

ω; this is the leftmost path of which C is a subset.
We define βc(i) = 1 if and only if αC(0) . . . αC(i− 1) ∈ C.

(3) C is infinite, let C = {w1, w2, . . . }, then αC is the common continuation
of all wi and βC is defined as above. Then every wi is a prefix of αC as
in (2).

Now that we have established a coding of chains C by pairs (αC , βC), we
will use this correspondence to rewrite chainE-formulas speaking about the
structure T2 as equivalent S1S-formulas.

As S1S-formulas are evaluated over the structure (N,+1) we identify a pair
(αC , βC) with sets of natural numbers in the following way: Given an ω-word
α ∈ {0, 1}ω we can identify α with a set X such that j ∈ X ⇔ α(j) = 1.

Lemma 6.1 Any chain0,E-formula ϕ(X1, . . . ,Xn) can be rewritten as an S1S-
formula ϕ′(Y1, Z1, . . . , Yn, Zn) such that for all chains C1, . . . , Cn and the cor-
responding pairs (αC1

, βC1
), . . . , (αCn , βCn) we have:
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(∗)
({0, 1}∗ , S0, S1, E) |= ϕ[C1, . . . , Cn]

if and only if (N,+1) |= ϕ′[αC1
, βC1

, . . . , αCn , βCn ].

Proof. By induction over chain0-formulas we show that for any chain0-formula
ϕ(X1, . . . ,Xn) there is an S1S-formula ϕ′(Y1, Z1, . . . , Yn, Zn) such that (∗)
holds. For the induction base we have to consider the atomic formulas Sing(X),
Xi ⊆ Xj , S0(Xi,Xj), S1(Xi,Xj) and E(Xi,Xj). The formulas are translated
as follows:

• Sing(X)

A formula has to express that Z is a singleton. This is expressed by
ϕSing(Y,Z) := ∃x(Z(x) ∧ ∀x 6= y → ¬Z(y))

• Xi ⊆ Xj is translated into ϕ⊆(Yi, Zi, Yj , Zj) :=

∃i
(

ϕmax(i, Zi) ∧ ∀j(Zi(j) → Zj(j)))
“Xi is a finite chain” “Xi ⊆ Xj”

∧ ∀j(j < i→ (Yi(j) ↔ Yj(j))
)

“first part of path of Xj corresp. to path of Xi”

∨
(

∀i∃j(i < j ∧ Zi(j)) ∧ ∀j(Zi(j) → Zj(j)) ∧ ∀j(Yi(j) ↔ Yj(j))
)

“Xi is infinite“ “Xi ⊆ Xj” “path of Xj corresp. to
path of Xi”

with ϕmax(x,X) := ∀y(X(y) ∧ x 6= y → y < x) expressing that x is the
maximal element in X.

• S0(Xi,Xj)

For singletons Xi = {xi} at tree level x and Xj = {xj} at tree level y,
a formula has to express that they are successors on the same path. A
respective formula is given by

∃x∃y
(

Zi(x) ∧ Zj(y) ∧ x+ 1 = y ∧ ∀j(j < x→ (Yi(j) ↔ Yj(j))
)

and that the last letter of xj is 0. This easily expressed by ¬Yj(y).

An overall translation yields

ϕS0
(Yi, Zi, Yj , Zj) := ϕSing(Yi, Zi) ∧ ϕSing(Yj , Zj) ∧

∃x∃y
(

Zi(x) ∧ Zj(y) ∧ x+ 1 = y ∧ ∀j(j < x→ (Yi(j) ↔ Yj(j)) ∧ ¬Yj(y)
)

• S1(Xi,Xj)

A formula differs from the case S0(Xi,Xj) only that it has to express that
the last letter of xj is 1. A translation is given by

ϕS1
(Yi, Zi, Yj , Zj) := ϕSing(Yi, Zi) ∧ ϕSing(Yj , Zj) ∧

∃x∃y
(

Zi(x) ∧ Zj(y) ∧ x+ 1 = y ∧ ∀j(j < x→ (Yi(j) ↔ Yj(j)) ∧ Yj(y)
)
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• E(Xi,Xj)

For singletons Xi = {xi} and Xj = {xj} a formula hat to express that
they are on the same tree level x. A translation yields

ϕE(Yi, Zi, Yj , Zj) := ∃x
(

Zi(x) ∧ Zj(x) ∧ ∀y(x 6= y → ¬Zi(y) ∧ Zj(y))
)

For the induction step it suffices to consider the connectives ¬,∨ and the set
quantifier ∃, since ∧,→ and ∀ are definable in terms of them. Let ϕ,ψ be chain0-
formulas, by induction hypothesis the S1S-formulas ϕ′, ψ′ are the respective
translations. Then ¬ϕ is translated to ¬ϕ′, the disjunction ϕ ∨ ψ is translated
to ϕ′ ∨ ψ′. The formula ∃Xiϕ where Xi is a free variable in ϕ is translated to
∃Yi∃Ziϕ

′.

�

This transformation applied to sentences yields a reduction of the chainE-
theory of T2 = ({0, 1}∗, S0, S1, E) to S1S which is decidable.

6.2 Chain Logic over TN with MSO on Siblings

In this section we extend the result of the previous section to the infinitely
branching tree over N. We will use the prefix relation instead of direct successor
relations and moreover introduce predicates Pi which connect siblings, i.e. the
children of a parent node.

Consider the tree structure TN = (N∗,�, P1, . . . , Pk, E) where

• u � v :⇔ u is a prefix of v;

• Pi(u1, . . . , uk) :⇔ u1, . . . , uk are siblings ua1, . . . , uak, u ∈ N∗ such that
(N,+1) |= ϕi[a1, . . . , ak] for i ∈ {1, . . . , k}.

The new predicates Pi allow us to express S1S-definable properties on the
sibling set. The meaning of each predicate Pi is defined by an S1S-formula
ϕi. Speaking over chains, we will call chainE-logic extended by these predi-
cates chainsibE -logic. Alternatively, it is also possible to define infinitely many
predicates Pϕ for each possible S1S-formula ϕ. Both variants are equally ex-
pressive. Let us take a look at an example that illustrates a possible usage of
this extension of chainE-logic.

Example 6.2 For instance, we can express that there is a chain, such that
the last letters of its elements are in alternation even or odd. A respective
chainsibE -formula is given by

∃X∀x∀y
(

X(x) ∧X(y) ∧ x 6= y ∧ x � y ∧ ¬∃z(X(z) ∧ x � z ∧ z � y ∧ x 6= z))

→ (P even(x) ↔ P odd(y))
)

where ϕeven(u) = ∀X
(

X(0) ∧ ∀y(X(y) → X(y + 1 + 1)) → X(u)
)

, ϕodd(u) =
¬ϕeven(u). The formulas ϕeven(u) and ϕodd(u) speak over the properties of
siblings, expressing that and element u is even or odd, respectively.
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Our goal is to show that chainsibE -logic is a decidable extension of chainE-
logic.

Theorem 10 The chainsibE -theory of TN = (N∗,�, P1 . . . , Pk, E) is decidable.

The proof is similar to the proof of Theorem 9 presented in the previous
section. We claim that there is a reduction from the chainsibE -theory of TN to the
M-L-MSO theory where we choose M as (N,+1) and L as MSO. Thus an M-L-
formula is an S1S-formula. Therefore, to increase readability, we will speak of
MSOS1S-formulas instead of (N,+1)-MSO-MSO-formulas in this section.

As before, we use a simpler variant of chainsibE -logic, in which first-order
variables are eliminated. We will refer to this variant as chainsib0,E-logic with
atomic formulas Sing(X), X ⊆ Y , X � Y , Pi(X1, . . . ,Xn) and E(X,Y ). Ev-
ery chainsibE -formula can easily be rewritten as an equivalent chainsib0,E-formula
analogous to the procedure as presented in Remark 4.9.

Similar to the previous section, we encode a chain C in TN by a pair
(αC , βC) ∈ (Nω × Bω) of ω-words. The sequence αC represents the leftmost
infinite path of which C is a subset, it can be interpreted as a sequence of “di-
rections”. Whereas the 0-1-sequence βC encodes membership in C along the
path as defined in the previous case of the infinite binary tree.

Now, we provide a translation from the chainsib0,E-theory into the MSOS1S-
theory.

For the corresponding pair (αC , βC) of a chain C there exists a word model
α as introduce in Definition 5.9. For improved readability, we write α(αC , βC)
instead of α.

Lemma 6.3 Any chainsib0,E-formula ϕ(X1, . . . ,Xn) can be rewritten as an

MSOS1S-formula ϕ′ such that for all chains C1, . . . , Cn and the corresponding
pairs (αC1

, βC1
), . . . , (αCn , βCn) we have:

(∗)
TN |= ϕ[C1, . . . , Cn]

if and only if α(αC1
, βC1

, . . . , αCn , βCn) |= ϕ′.

Proof. By induction on the structure of chainsib0,E-formulas we show that for

any chainsib0,E-formula ϕ(X1, . . . ,Xn) there is an MSOS1S-formula ϕ′ such that
(∗) holds. First we define two predicates, which we shall use in the trans-
lated formulas. The predicate Pmember,i(x) is defined by the S1S-formula
ϕmember,i(x1, y1, . . . , xn, yn) := (yi = 1). At position x we determine the choice
of the free variables x1, y1, . . . , xn, yn in ϕmember,i. Thus, Pmember,i(x) expresses
that at position x is an element of a chain Ci. In addition, we define the pred-
icate PeqDiri,j (x) by the S1S-formula ϕeqDiri,j (x1, y1, . . . , xn, yn) := (xi = xj).
The predicate PeqDiri,j (x) expresses that at position x the paths of which the
chains Ci, Cj are a subset take the same directions. The atomic formulas are
translated as follows:

• Sing(Xi)
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Given a chain Ci, a formula has to express that the 0-1-sequence βCi
that

encodes the membership in Ci along the path equals 1 exactly once. This
is expressed by

ϕSingXi
:= ∃x

(

Pmember,i(x) ∧ ∀y(x 6= y → ¬Pmember,i(y)
)

• Xi ⊆ Xj

Given chains Ci and Cj , there are two properties a formula has to express:

– If Ci is a finite chain, then we have to express that the first part of
the path of Cj corresponds to the path of Ci. This is expressed by

∃x
(

Pmember,i(x)∧∀y(x < y → ¬Pmember,i(y))∧∀j(j < x→ PeqDiri,j(j))
)

– If Ci is infinite, the path of Cj always corresponds to the path of Ci.
This is expressed by

(

∀j PeqDiri,j (j)
)

– Furthermore, a formula has to express that every member of Ci is
also a member of Cj. This is expressed by

∀x(Pmember,i(x) → Pmember,j(x))

A combination yields

ϕXi⊆Xj
:= ∃x

(

Pmember,i(x) ∧ ∀y(x < y → ¬Pmember,i(y))

∧∀j(j < x→ PeqDiri,j(j))
)

∨
(

∀j PeqDiri,j (j)
)

∧∀x(Pmember,i(x) → Pmember,j(x))

• Xi � Xj

Given singletons Ci and Cj, a formula has to express that the first part
of the path of Cj corresponds to the path of Ci. A respective formula is
given by ϕXi�Xj

:=

∃x∃y
(

x ≤ y ∧ Pmember,i(x) ∧ Pmember,j(y) → ∀j(j < x→ PeqDiri,j(j))
)

• E(Xi,Xj)

Given singletons Ci and Cj , a formula has to express that there exists a
position where both βCi

and βCj
equal 1 and otherwise both equal 0. A

respective formula is given by ϕE(Xi,Xj) :=

∃x
(

Pmember,i(x)∧Pmember,j(x)∧∀y(x 6= y → ¬Pmember,i(y)∧¬Pmember,j(y)
)

• Pi(X1, . . . ,Xk)

Given singletons C1, . . . , Ck, a formula has to express two properties :
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– First of all, a formula has to express that the singletons are siblings.
Therefore we introduce the formula ϕSiblingi,j(x) := ∀y

(

y < x →
PeqDiri,j(y)

)

which expresses that Ci and Cj are siblings.

– The meaning of Pi is defined by the S1S-formula ϕi, thus the formula
has to express that the siblings fulfill the property. Therefore we
introduce the predicate Pϕi

which is also defined by ϕi(x1, . . . , xk).

An overall translation yields:

ϕPi
:= ∃x

(

∧

i∈{1,...,k}

Pmember,i(x) ∧
∧

i∈{2,...,k}

ϕSibling1,i(x) ∧ Pϕi
(x)

)

For the induction step we consider only ¬,∨ and ∃, since ∧,→ and ∀ are
definable in terms of them. The cases ¬ and ∨ are straightforward. Let ϕ
and ψ be chainsib0,E-formulas, and by induction hypothesis ϕ′ and ψ′ are the

translations, respectively. Then ¬ϕ is translated to the MSOS1S-formula ¬ϕ′,
and ϕ ∨ ψ is translated to the MSOS1S-formula ϕ′ ∨ ψ′.

We now turn to a preparation to handle the existential set quantifier ∃. In
an MSOS1S-formula we group single appearances of predicates referring to the
same position x together to avoid unnecessary repetition. This can easily be
done as predicates are defined by formulas. We introduce a new formula as a
corresponding Boolean combination of the formulas of the previous appearances
of predicates referring to x. We illustrate this in the following example.

Example 6.4 Consider the formula

∃x∃y(P1(x) ∧ ¬P2(x) → S(x, y) ∧ P2(y) ∧ P3(y)).

The employed predicates P1, P2, and P3 are defined by the formulas ϕ1, ϕ2,
and ϕ3, respectively. We introduce two new predicates Q(x) and Q′(x). The
predicate Q(x) defined by the formula ϕi := (ϕ1 ∧ ¬ϕ2), the predicate Q′(x)
defined by the formula ϕj := (ϕ2 ∧ ϕ3). For instance, referring to position x,
we replace P1(x) ∧ ¬P2(x) by Q(x). Altogether we obtain

∃x∃y
(

Q(x) → S(x, y) ∧Q′(y)
)

It is easy to see that this formula is equivalent to the formula above.

Now we can derive a translation for the chainsib0,E-formula ∃Xnϕ(X1, . . . ,Xn).

By induction hypothesis, we can construct an equivalent MSOS1S-formula
to ϕ. Let ϕ′ denote this formula. In ϕ′, we replace any Boolean com-
bination of predicates that refer to a fixed position x, by a single predi-
cate Q(x) as described above. Modified in this way, the structure of ϕ′ al-
lows us to make a simple further modification such that the resulting for-
mula is equivalent to ∃Xnϕ(X1, . . . ,Xn). Recall that each predicate Q(x) is
defined by a formula ϕ(x1, y1, . . . , xn, yn), we redefine Q(x) by the formula
∃xn∃ynϕ(x1, y1, . . . , xn, yn). Thereby we obtain an equivalent MSOS1S-formula
to ∃Xnϕ(X1, . . . ,Xn).
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Let us turn to the correctness of the construction: The chain Cn induces
the choice of the variables xn, yn in every formula QJ at every position in the
corresponding word model. Vice versa, the choice of the variables xn, yn for
every position induces sequences αCn , βCn which in turn induce a chain Cn.

�

Applied to a chainsib0,E sentence ϕ, this transformation yields an equivalent

MSOS1S-sentence ϕ′. Thus, we obtain a reduction of the chainsib0,E -theory of TN
to the MSOS1S-theory. This theory is decidable, as a consequence of Theorem
6 that states that satisfiability of M-L-MSO sentences is decidable if and only
if the L-theory of M is decidable. In this case the L-theory of M is the logical
system S1S which is decidable. This completes the proof of Theorem 10.

6.3 Chain Logic over Tree Iterations

Definition 6.5 Let M = (Σ, R1, . . . , Rm) be a structure. We define the tree
iteration

M
∗ = (Σ∗,�, R1, . . . , Rm)

where, for every relation Ri with arity ni,

Ri(ua1, . . . , uani
) :⇔ u ∈ Σ∗, a1, . . . , ani

∈ Σ and Ri(a1, . . . , ani
)

Additionally, we add the equal level predicate E and define the tree iteration

M
∗
E = (M∗, E) = (Σ∗,�, R1, . . . , Rm, E).

We mention two related results. In [KL06] Kuske and Lorey proved the
following result.

Theorem 11 ([KL06]) The chain-theory of M∗ = (Σ∗,�, R1, . . . , Rm) is de-
cidable if the FO-theory of M is decidable.

This result was further extended in [Bès08], where the structure M
∗ was

replaced by the structure

M̂
∗
E = (Σ∗,�, R̂1, . . . , R̂m, E)

where, for every relation Ri with arity ni,

R̂i(u1a1, . . . , uni
ani

) :⇔ if all uj ’s have the same length and Ri(a1, . . . , ani
).

In M̂
∗
E the equal level predicate was added and furthermore a predicate

R̂i is defined over an entire tree level and is not restricted to a sibling set. It

should be noted that every predicate Ri can be defined in M̂
∗
E . Bès showed the

following result.

Theorem 12 ([Bès08]) The chainE-theory of M̂∗
E = (Σ∗,�, R̂1, . . . , R̂m, E)

is decidable if the FO-theory of M is decidable.
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We now turn to an extension of chain-logic by MSO-definable properties
over siblings.

Definition 6.6 An MSO-expansion of a structure M = (Σ, R1, . . . , Rm) is de-
fined by MSO-formulas ϕ1, . . . , ϕk speaking over the structure M. We define
the structure

M
∗
MSO = (Σ∗,�, R1, . . . , Rm, P1, . . . , Pk)

where for every i ∈ {1, . . . , k}, Pi(ua1, . . . , uani
) :⇔ u ∈ Σ∗, a1, . . . , ani

∈ Σ
and M |= ϕi[a1, . . . , ani

].

In an MSO-expansion a predicate Pi allows us to express MSO-
definable properties on a sibling set, because we can specify the meaning of
Pi(X1, . . . ,Xk) by any MSO-formula ϕi speaking over the structure M. Recall,
that the predicates Ri also connect siblings, but can only express that for a
sibling set that the relation Ri holds. Thus, predicates Pi are more expressive.

Remark 6.7 When we consider the MSO-expansion of a structure M =
(Σ, R1, . . . , Rm) the predicates R1, . . . , Rm are special cases of predicates Pi.
Every predicate Ri(x1, . . . , xn) is equivalent to the predicate PRi

defined by the
formula Ri(x1, . . . , xn).

Theorem 13 The chainsibE -theory of M
∗
MSO ,E = (Σ∗,�, R1, . . . , Rm,

P1, . . . , Pk,E) with equal level predicate is decidable if the MSO-theory of M

is decidable.

We claim that there is a reduction from the chainsibE -theory of M∗
MSO ,E to

the M-L-MSO-theory where we fix L as MSO-logic. We call this logical frame-
work MSOM-logic. As in the previous section, we use chainsib0,E -logic in which
only second-order variables occur with atomic formulas Sing(X),X ⊆ Y,X �
Y,Ri(X1, . . . ,Xk), Pj(X1, . . . ,Xk), and E(X,Y ).

Again, we encode a chain C by a pair (αC , βC) of ω-words. Since we speak
over structures M

∗
MSO ,Ewe have to consider any domain of the base structure

M. This means the domain does not necessarily contain the symbols 0, 1.
Therefore we have to alter our coding of a chain C slightly. We keep the pair
(αC , βC) of ω-words over Σ but redefine βC only, thus:

• αC encodes the infinite path of which C is a subset.

• βC encodes membership in C along the path where αC(i) = βC(i) iff
αC(0) . . . αC(i− 1) ∈ C.

Now we provide a translation from the chainsib0,E-theory of M∗
MSO ,E to the

MSOM-theory.

Lemma 6.8 Any chainsib0,E-formula ϕ(X1, . . . ,Xn) over M
∗
MSO ,E = (Σ∗,�,

R1, . . . , Rm, P1, . . . , Pk, E) can be rewritten as an MSOM-formula ϕ′ such that
for all chains C1, . . . , Cn and the corresponding pairs (αC1

, βC1
), . . . , (αCn , βCn)

we have:
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(∗)
M

∗
E |= ϕ[C1, . . . , Cn]

if and only if α(αC1
, βC1

, . . . , αCn , βCn) |= ϕ′.

Proof. By induction over the structure of chainsib0,E -formulas over M
∗
E we show

that for any chainsib0,E-formula ϕ(X1, . . . ,Xn) over M
∗
E there is an MSOM-

formula ϕ′ such that (∗) holds.
For the induction basis we have to consider the atomic formulas Sing(X),

Xi ⊆ Xj , Xi � Xj , Ri(X1, . . . ,Xn), Pi(X1, . . . ,Xk), E(Xi,Xj) and
Pi(X1, . . . ,Xk). Note that these formulas are also the same formulas we con-
sidered over TN = (N∗,�, P1, . . . , Pk, E), the only addition is Ri(X1, . . . ,Xn).
Due to this similarity the translation of the atomic formulas requires only a
slight adaption of the translations presented in Lemma 6.3. Recall that a chain
C is encoded by a pair (αC , βC); in case of the structure TN the sequence βC
was defined over {0, 1}, in this more general case βC is defined over Σ. We intro-
duced two predicates Pmember,i(x) and PeqDiri,j (x) with the meaning at position
x is an element of chain Ci and that at position x the paths of Ci, Cj take the
same direction. We have to redefine the predicate Pmember,i(x) since the mem-
bership is coded no longer by a 0-1-sequence. Thus we redefine Pmember,i(x) by
the formula ϕmemberi(x1, y1, . . . , xn, yn) := (xi = yi). Now we can use the same
translations for the atomic formulas as presented in the previous section. What
is left is to construct a translation for the atomic formula Ri(X1, . . . ,Xn). A
respective formula is given by

ϕRi
:= ∃x

(

∧

i∈{1,...,k}

Pmember,i(x) ∧
∧

i∈{2,...,k}

ϕSibling1,i(x) ∧ PRi
(x)

)

In the induction step we can proceed in the same way as presented in the
induction step in Lemma 6.3 in the previous section.

�

Applying the translation to a sentence yields an equivalent MSOM sentence.
By Theorem 6 we obtain that the satisfiability of an MSOM sentence is decidable
if the MSO-theory ofM is decidable. Thus we obtain a reduction of the chainsibE -
theory of M∗ = (Σ∗,�, R1, . . . , Rm, P1, . . . , Pk) which is decidable if the MSO-
theory of M is decidable. This completes the poof of Theorem 13.

Let us take a look at how we can define the previous considered cases as
tree iterations: The tree structure TN = (N∗,�, P1, . . . , Pk, E) is the MSO-
expansion of the base structure N = (N,+1). For the infinite binary tree
T2 = ({0, 1}∗, S0, S1, E) we choose MB = ({0, 1}, 0, 1) as base structure. The
corresponding tree iteration is given by M

∗
B,E = ({0, 1}∗,�, R0, R1, E). The

relations S0(x, y) and S1(x, y) are definable in M
∗
B,E. For instance, we can

define S0(x, y) := x 6= y ∧ x � y ∧ ¬∃z(x � z ∧ z � y ∧ x 6= z) ∧R0(y). We can
define the relation S1(x, y) analogously.



Chapter 7

Conclusion

In this work we focused on the connection between finite automata over infinite
alphabets and logic. We have generalized the equivalence of finite automata
recognizability and monadic second-order logic definability to the case of infinite
alphabets.

In Chapter 3 we have introduced an automaton model that recognizes rela-
tions of words over infinite alphabets. We defined the automaton model in the
form of synchronous n-tape automaton with transitions specified by formulas
in a suitable logical framework. Thus we were able to provide an automaton
model with good closure and decision properties. We proved that the class of
recognizable relations by this automaton model is closed under Boolean op-
erations and projection. Regarding decision problems, such as the emptiness
problem the decidability depends on the decidability of the logical formalism
used in the transitions.

In Chapter 4 we focused on the connection between the automaton model
and monadic second order logic. We showed the general equivalence of monadic
second-order interpreted over words over infinite alphabets and finite automaton
recognizability. Therefore we provided a translation from formulas to automata
and vice versa.

In Chapter 5 we have seen that the same automaton model equipped with
Büchi acceptance recognizes relations of ω-words over infinite alphabets. We
were able to extend the previous results to the case of relations of ω-words and
also showed that monadic second-order logic over relations of ω-words has the
same expressiveness as the automaton model. Furthermore, we have seen how
we can obtain an equivalent deterministic automaton model if we use Muller
acceptance instead of Büchi acceptance.

In chapter 6 we introduced an extension of monadic chain logic that allows to
express monadic second-order properties on the sibling set, i.e. direct successors
of a vertex. We have shown that this form of chain logic over a tree iteration
M

∗ is decidable if the monadic second-order theory of the base structure M is
decidable.

For a possible extension of the present results we mention two directions.
The first would enable to express monadic second-order properties not only on
the sibling set, i.e. direct successors of a vertex, but on a whole level of the
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tree. This extension is however too strong to allow decidability — a proof idea
is sketched in [Tho09] since weak monadic second-order logic with equal level
can then be expressed, which is known to undecidable.

A second approach is to extend the (weak) tree model M∗ as presented in
Chapter 6 by the “strong tree iteration” in which a stronger connection between
tree level is possible, thus a stronger connection between successive elements of
chains. In particular, equality of successive elements becomes expressible (which
is not covered be our results see Example 3.9). This extension would have to
use Muchnik’s theorem of tree iterations where the unary “clone predicate” is
included, which states that the last two letters of a word are the same (see
[BB02]).
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