
Uniformization Problems for Tree-automatic
Relations and Top-down Tree Transducers∗

Christof Löding and Sarah Winter

Lehrstuhl für Informatik 7, RWTH Aachen University, Aachen, Germany

Abstract
For a given binary relation of finite trees, we consider the synthesis problem of deciding whether
there is a deterministic top-down tree transducer that uniformizes the relation, and constructing
such a transducer if it exists. A uniformization of a relation is a function that is contained in
the relation and has the same domain as the relation. It is known that this problem is decidable
if the relation is a deterministic top-down tree-automatic relation. We show that it becomes
undecidable for general tree-automatic relations (specified by non-deterministic top-down tree
automata). We also exhibit two cases for which the problem remains decidable. If we restrict the
transducers to be path-preserving, which is a subclass of linear transducers, then the synthesis
problem is decidable for general tree-automatic relations. If we consider relations that are finite
unions of deterministic top-down tree-automatic relations, then the problem is decidable for
synchronous transducers, which produce exactly one output symbol in each step (but can be
non-linear).
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1 Introduction

A uniformization of a (binary) relation is a function that selects for each element in the
domain of the relation a unique image that is in relation with this element. Originally,
uniformization has been studied in set theory, where the complexity of a class of definable
relations is related with the complexity of uniformizations for these relations (see [20] for
results of this kind). The basic uniformization question for a class C of relations is whether
each relation from C has a uniformization in C.

Automata provide a natural framework for defining relations (over words or trees), and
uniformization problems in this setting have been studied since the early days of automata
theory. Word relations defined by asynchronous finite automata [9], also called rational
relations, were first shown to have rational uniformizations in [15, Theorem 3] (with many
alternative and simplified proofs following later). For relations of infinite words that are
accepted by synchronous finite automata, or equivalently definable in monadic second-order
logic (MSO) over the structure consisting of natural numbers equipped with the successor
relation, the uniformization property is shown in [23]. Over infinite trees, the uniformization
property fails for MSO definable relations (corresponding to synchronous tree automata)
[12, 2], while it has been shown recently that uniformization is possible for synchronous
relations over finite trees [16, 4]. These relations defined by synchronous automata are usually
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referred to as automatic, ω-automatic, tree-automatic and ω-tree-automatic relations (for
finite words, infinite words, finite trees, and infinite trees, respectively).

In a more algorithmic setting, uniformization is often referred to as synthesis: The relation
is viewed as a specification between inputs and outputs, and the function is supposed to
be realized by a device that produces the output while processing the input. This means,
that the class for the uniformizations is usually different from the class of the specifications,
and the problem of interest is now the decision problem whether a given relation admits a
uniformization in the desired class.

The classical setting, originating from Church’s synthesis problem [3], is the one of infinite
words. The specification is given by an ω-automatic relation (orginally in MSO), and the
question is whether it can be uniformized by a synchronous sequential transducer that
produces, letter by letter, an infinite output word while reading an infinite input word. The
seminal paper of Büchi and Landweber [1] shows the decidability of this problem, and has
been extended later to uniformizations by asynchronous sequential transducers [14, 13]. A
detailed study of the synthesis of sequential transducers for asynchronous automata on finite
words is provided in [6].

Our aim is to study these uniformization questions for relations over finite trees. Tree
automata are used in many fields, for example as a tool for analyzing and manipulating
rewrite systems or XML Schema languages (see [7]). Tree transformations that are realized
by finite tree transducers thus become interesting in the setting of translations from one
document scheme into another [19]. As class for the uniformizations we consider deterministic
top-down tree transducers (D↓TTs), which are a natural extension of sequential transducers
on words. A first result in this setting was obtained in [18], where we show that it is
decidable whether a tree-automatic relation that is defined by a deterministic top-down tree
automaton (D↓TA) can be uniformized by a D↓TT. A representation of the specification by
a deterministic automaton model is essential in many synthesis algorithms for automata. A
standard approach is to build a game in which the two players produce input and output.
The aim of the output player is to ensure that the pair of input and output produced along
a play satisfies the specification. This property is ensured in the game by simulating a
deterministic automaton for the specification on the moves of the players. A winning strategy
for the output player then corresponds to a uniformizer.

In this paper, we show that the synthesis problem for D↓TT from nondeterministic tree-
automatic relations is indeed undecidable, showing that the nondeterminism does not only
destroy the game theoretic approach (as sketched above) but makes the problem intractable
in general. On the positive side, we prove two decidability results for restricted classes of
uniformizers and specifications: 1. For nondeterministic tree-automatic relations uniformiza-
tion by path-preserving D↓TTs is decidable. Intuitively, we call a D↓TT path-preserving
if every node of the output tree is produced from a node of the input tree that is above
or below the output node (this implies that each path-preserving D↓TT is in particular
linear). For this class of uniformizers we can adapt the game theoretic approach by using
guidable automata [5, 17] instead of deterministic automata for the specification. 2. If we
restrict the specifications to unions of D↓TAs with disjoint domain, we obtain decidability
for uniformizations by synchronous D↓TTs. We call a D↓TT synchronous if it produces one
output symbol in each transition (but the transitions can be non-linear). While this is a
rather specific result, it is the first decidability result for synthesis of transducers in which in
the synthesized transducer may need to be non-linear.

The paper is structured as follows. In Section 2 we fix some basic definitions and
terminology. In Section 3 we show undecidability for synthesis of D↓TTs from tree-automatic
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specifications, and the decidability results are presented in Section 4.

2 Preliminaries

Words and trees. The set of natural numbers containing zero is denoted by N. For a set
S, the powerset of S is denoted by 2S . An alphabet Σ is a finite non-empty set of letters. A
finite word is a finite sequence of letters. The set of all finite words over Σ is denoted by
Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, the empty word is denoted by ε. For
w = a1 . . . an ∈ Σ∗ for some n ∈ N and a1, . . . , an ∈ Σ, let w[i] denote the ith letter of w,
i.e., w[i] = ai. Furthermore, let w[i, j] denote the infix from the ith to the jth letter of w,
i.e., w[i, j] = ai . . . aj . We write u v w if there is some v such that w = uv for u, v ∈ Σ∗. A
subset L ⊆ Σ∗ is called language over Σ.

A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a rank rk(f) ∈ N. The
set of letters of rank i is denoted by Σi. A tree domain dom is a non-empty finite subset
of (N \ {0})∗ such that dom is prefix-closed and for each u ∈ (N \ {0})∗ and i ∈ N \ {0}
if ui ∈ dom , then uj ∈ dom for all 1 ≤ j < i. We speak of ui as successor of u for each
u ∈ dom and i ∈ N \ {0}.

A (finite Σ-labeled) tree is a pair t = (domt, valt) with a mapping valt : domt → Σ such
that for each node u ∈ domt the number of successors of u is a rank of valt(u). The height h
of a tree t is the length of its longest path, i.e., h(t) = max{|u| | u ∈ domt}. The set of all
Σ-labeled trees is denoted by TΣ. A subset T ⊆ TΣ is called tree language over Σ.

A subtree t|u of a tree t at node u is defined by domt|u = {v ∈ N∗ | uv ∈ domt} and
valt|u(v) = valt(uv) for all v ∈ domt|u . In order to formalize concatenation of trees, we
introduce the notion of special trees. A special tree over Σ is a tree over Σ∪· {◦} such that ◦
occurs exactly once at a leaf. Given t ∈ TΣ and u ∈ domt, we write t[◦/u] for the special
tree that is obtained by deleting the subtree at u and replacing it by ◦. Let SΣ be the set of
special trees over Σ. For t ∈ SΣ and s ∈ TΣ or s ∈ SΣ let the concatenation t · s be the tree
that is obtained from t by replacing ◦ with s.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet. We denote by
TΣ(Xn) the set of all trees over Σ which additionally can have variables from Xn at their
leaves. We define X0 to be the empty set, the set TΣ(∅) is equal to TΣ. Let X =

⋃
n>0Xn.

A tree from TΣ(X) is called linear if each variable occurs at most once. For t ∈ TΣ(Xn)
let t[x1 ← t1, . . . , xn ← tn] be the tree that is obtained by substituting each occurrence of
xi ∈ Xn by ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once and in the order
x1, . . . , xn when reading the leaf nodes from left to right, is called n-context over Σ. Given
an n-context, the node labeled by xi is referred to as ith hole for every 1 ≤ i ≤ n. A special
tree can be seen as a 1-context, a tree without variables can be seen a 0-context. If C is an
n-context and t1, . . . , tn ∈ TΣ(X) we write C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

Tree automata. We fix our notations. For a detailed introduction to tree automata see
e.g. [10] or [7]. Let Σ =

⋃m
i=0 Σi be a ranked alphabet. A non-deterministic top-down tree

automaton (an N↓TA) over Σ is of the form A = (Q,Σ, Q0,∆) consisting of a finite set of
states Q, a set Q0 ⊆ Q of initial states, and ∆ ⊆

⋃m
i=0(Q×Σi×Qi) is the transition relation.

For i = 0, we identify Q × Σi × Qi with Q × Σ0. Let t be a tree and A be an N↓TA, a
run of A on t is a mapping ρ : domt → Q compatible with ∆, i.e., ρ(ε) ∈ Q0 and for each
node u ∈ domt with i ≥ 0 successors (ρ(u), valt(u), ρ(u1), . . . , ρ(ui)) ∈ ∆. A tree t ∈ TΣ
is accepted if, and only if, there is a run of A on t. The tree language recognized by A is
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66:4 Uniformization for Tree-automatic Relations and Top-down Tree Transducers

T (A) = {t ∈ TΣ | A accepts t}. A tree language T ⊆ TΣ is called regular if T is recognizable
by a non-deterministic top-down tree automaton.

A top-down tree automaton A = (Q,Σ, Q0,∆) is deterministic (a D↓TA) if the set Q0
is a singleton set and for each f ∈ Σi and each q ∈ Q there is at most one transition
(q, f, q1, . . . , qi) ∈ ∆. However, non-deterministic and deterministic top-down automata are
not equally expressive. It is effectively decidable whether a regular tree language is top-down
deterministic [10].

In Section 4.1 we use guidable tree automata [17]. The concept of guidable tree automata
is that another tree automaton can act as a guide, meaning that a tree automaton B can guide
a tree automaton A if an accepting run of B on a tree t can be translated deterministically
into an accepting run of A on t.

Formally, an N↓TAA can be guided by an N↓TA B if there is a mapping g : QA×∆B → ∆A
such that g(q, (p, a, p1, . . . , pi)) = (q, a, q1, . . . , qi) for some q1, . . . , qi ∈ QA, and for every
accepting run ρ of B over a tree t, g(ρ) is an accepting run of A over t, where g(ρ) = ρ′ is the
unique run such that ρ′(ε) = qA0 , and for all u ∈ domt : (ρ′(u), valt(u), ρ′(u1), . . . , ρ′(ui)) =
g (ρ′(u), (ρ(u), valt(u), ρ(u1), . . . , ρ(ui))). An N↓TA A is called guidable if it can be guided
by every N↓TA B such that T (B) ⊆ T (A).

Tree-automatic relations are defined by using tree automata over a product alphabet. For
nodes that belong only to one of the trees one uses a padding symbol. Formally, let Σ, Γ
be ranked alphabets and let Σ⊥ = Σ∪· {⊥}, Γ⊥ = Γ∪· {⊥}, where ⊥ is a new symbol with
rank 0. For an i-ary symbol f ∈ Σ⊥ and a j-ary symbol g ∈ Γ⊥, let rk((f, g)) = max{i, j}.
The convolution of (t1, t2) with t1 ∈ TΣ, t2 ∈ TΓ is the Σ⊥ × Γ⊥-labeled tree t = t1 ⊗ t2
defined by domt = domt1 ∪ domt2 , and valt(u) = (val⊥t1(u), val⊥t2(u)) for all u ∈ domt, where
val⊥ti (u) = valti(u) if u ∈ domti and val⊥ti (u) = ⊥ otherwise for i ∈ {1, 2}. As a special case,
given t ∈ TΣ, we define t⊗⊥ to be the tree with domt⊗⊥ = domt and valt⊗⊥(u) = (valt(u),⊥)
for all u ∈ domt. Analogously, we define ⊥⊗ t. We define the convolution of a tree relation
R ⊆ TΣ × TΓ to be the tree language TR := {t1 ⊗ t2 | (t1, t2) ∈ R}.

We call a (binary) relation R tree-automatic if there exists a regular tree language T
such that T = TR. For ease of presentation, we say a tree automaton A recognizes R if it
recognizes the convolution TR and denote by R(A) the induced relation R.

A uniformization of a relation R ⊆ X × Y is a function fR : X → Y such that
(x, fR(x)) ∈ R for all x ∈ dom(R). We are interested in uniformizations of tree-automatic
relations by deterministic top-down tree transducers.

Tree transducers. We consider top-down tree transducers, which read the tree from the
root to the leaves and produce finite output trees in each step that are attached to the
already produced output (see [7] for an introduction to tree transducers).

A top-down tree transducer (a ↓TT) is of the form T = (Q,Σ,Γ, q0,∆) consisting of a finite
set of states Q, a finite input alphabet Σ, a finite output alphabet Γ, an initial state q0 ∈ Q,
and ∆ is a finite set of transition rules of the form q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)],
or q(x1) → w[q1(x1), . . . , qn(x1)](ε-transition), where f ∈ Σi, w is an n-context over Γ,
q, q1, . . . , qn ∈ Q and variables xj1 , . . . , xjn

∈ Xi. A deterministic top-down tree transducer
(a D↓TT) has no ε-transitions and no two rules with the same left-hand side.

A configuration of a top-down tree transducer is a triple c = (t, t′, ϕ) of an input tree
t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a function ϕ : Dt′ → domt, where

valt′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors, and
valt′(u) ∈ Γ0 or valt′(u) ∈ Q for each leaf u ∈ domt′ , and
Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | valt′(u) ∈ Q}, i.e., ϕ maps every node from the
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Figure 1 The configuration sequence c0 to c5 of T on t from Example 1.

output tree t′ that has a state-label to a node of the input tree t.
Let c1 = (t, t1, ϕ1) and c2 = (t, t2, ϕ2) be configurations of a top-down tree transducer

over the same input tree. We define a successor relation →T on configurations as usual
by applying one rule. Figure 1 illustrates a configuration sequence explained in Example 1
below. Formally, for the application of a non-ε-rule, we define c1 →T c2 :⇔

There is a state-labeled node u ∈ Dt′ of the output tree t1 that is mapped to a node
v ∈ domt of the input tree t, i.e., ϕ1(u) = v, and

there is a rule valt1(u) (valt(v)(x1, . . . , xi)) → w[q1(xj1), . . . , qn(xjn
)] ∈ ∆ such that the

output tree is correctly updated, i.e., t2 = t1[◦/u] · w[q1, . . . , qn], and
the mapping ϕ2 is correctly updated, i.e., ϕ2(u′) = ϕ1(u′) if u′ ∈ Dt1\{u} and ϕ2(u′) = v.ji

if u′ = u.ui with ui is the ith hole in w.
Furthermore, let →∗T be the reflexive and transitive closure of →T and →n

T the reachability
relation for →T in n steps. From here on, let ϕ0 always denote the mapping ϕ0(ε) = ε. A
configuration (t, q0, ϕ0) is called initial configuration of T on t. A configuration c = (t, t′, ϕ)
is said to be reachable in a computation of T on t, if c0 →∗T c, where c0 is the initial
configuration of T on t. The relation R(T ) induced by a top-down tree transducer T is
R(T ) = {(t, t′) ∈ TΣ × TΓ | (t, q0, ϕ0)→∗T (t, t′, ϕ)}. For a (special) tree t ∈ TΣ or t ∈ SΣ let
T (t) ⊆ TΓ∪Q be the set of final transformed outputs of a computation of T on t, that is the
set {t′ | (t, q0, ϕ0)→∗T (t, t′, ϕ) s.t. there is no successor configuration of (t, t′, ϕ)}. Note, we
explicitly do not require that the final transformed output is a tree over Γ. In the special
case that T (t) is a singleton set {t′}, we also write T (t) = t′. The class of relations definable
by ↓TTs is called the class of top-down tree transformations.

I Example 1. Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h}, and Σ0 = {a}.
Consider the ↓TT T given by ({q},Σ,Σ, {q},∆) with ∆ = { q(a) → a, q(g(x1)) → q(x1),
q(h(x1))→ h(q(x1)), q(f(x1, x2))→ f(q(x1), q(x2)) }. For each t ∈ TΣ the transducer deletes
all occurrences of g in t. Consider t := f(g(h(a)), a). A possible sequence of configurations
of T on t is c0 →5

T c5 such that c0 := (t, q, ϕ0) with ϕ0(ε) = ε, c1 := (t, f(q, q), ϕ1) with
ϕ1(1) = 1, ϕ1(2) = 2, c2 := (t, f(q, q), ϕ2) with ϕ2(1) = 11, ϕ2(2) = 2, c3 := (t, f(q, a), ϕ3)
with ϕ3(1) = 11, c4 := (t, f(h(q), a), ϕ4) with ϕ4(11) = 111, and c5 := (t, f(h(a), a), ϕ5). A
visualization of this sequence is shown in Figure 1.

We consider two restricted types of top-down tree transducers. The first type are
transducers with bounded (output) delay. Intuitively, delay occurs in a computation of a
transducer if there is a difference between the number of produced output symbols and
read input symbols. If the output is behind this is called output delay. More formally, in a
configuration (t, t′, ϕ) occurs delay d w.r.t. a node u ∈ Dt′ if the absolute value of |ϕ(u)|− |u|
equals d. We speak of output delay if |ϕ(u)|− |u| is a positive integer. We say the delay (resp.
output delay) in a ↓TT T is bounded by k, if there is a k ∈ N such that for every reachable
configuration c of T the maximal delay (resp. output delay) that occurs in c is at most k.

MFCS 2016
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We speak of synchronous ↓TTs if the delay is bounded by 0. Consider T from Example 1
and the configuration sequence of T given in Example 1. In c2 occurs output delay 1 resp. 0
w.r.t. node 1 resp. 2 of the output tree. It is easy to see that the transducer has unbounded
output delay, because it deletes all occurrences of g in an input tree.

The second restricted type of top-down tree transducer concerns the ability to copy and
swap subtrees. A ↓TT is linear if all the trees in the transitions are linear. In Section 4.1,
we consider a special case of linear ↓TTs called path-preserving. Intuitively, a ↓TT is said to
be path-preserving if in every computation the read input and correspondingly produced
output are always on the same path, i.e., every node of the output tree is produced from
a node of the input tree that is above or below the output node. More formally, in every
reachable configuration (t, t′, ϕ) of the transducer it holds either u v ϕ(u) or ϕ(u) v u for
every node u ∈ Dt′ . We refer to this kind of ↓TTs as P↓TTs for short.

3 Undecidability Results

I Theorem 2. It is undecidable whether a given tree-automatic relation has a uniformization
by a deterministic top-down tree transducer.

Proof Sketch. We give a reduction from the halting problem for Turing machines (TM).
Given a TM M , our goal is to describe a tree-automatic specification RM which can only
be realized by a deterministic top-down tree transducer if M does not halt on the empty
input tape. In order to save space, we draw trees from left to right rather than from top to
bottom. For explaining the idea, we provide for a given Turing machine a specification S
and a uniformizer θ and a D↓TT-realizable transformation θ such that θ uniformizes S if,
and only if, M does not halt on the empty tape. For the full proof, the specification and the
uniformizer have to be adapted such that θ becomes the only candidate for uniformizer of S,
which then implies the undecidability of the existence of a uniformizer.

In the following, we explain the simple versions of S and θ. Let QM denote the state set of
M , q0 denote the initial state ofM , and ΓM denote the tape alphabet ofM . We can represent
a configuration c ofM , as a unary tree, i.e., as a string, of the form u1−· · ·−uk−q−v1 · · ·−u`,
where u1, . . . , uk, v1, . . . , v` ∈ ΓM , u1 . . . ukv1 . . . v` is the content of the tape of M , q ∈ QM
is the current control state of M , and the head of M is on v1.

We start with the first step. Concerning the specification S, we are interested in pairs
(t, t′) of trees over QM ∪ ΓM ∪ {f, a} which have the form(

f

c0

f

c1

... f

cn

a
,
f

k1

f

k2

... f

km

a
)
,

where m ≥ n, each ci (resp. ki) is a configuration of M , c0 is the initial configuration of M
on the empty tape and cn is a halting configuration of M . Note that the numbering of the ci
starts with 0 and the numbering of the ki with 1, this is intended. Such a pair of trees is part
of the specification S if it additionally satisfies the following: There is an i ∈ {0, . . . , n− 1}
such that succ(ci) 6= ki+1, where succ(ci) is the successor configuration of ci.

The specification S is tree-automatic. Note that for a pair (t, t′) of the correct form, the
configurations ci and ki+1 overlap for each i ∈ {0, . . . , n− 1} in t⊗ t′. A tree-automaton can
guess a branch and verify that succ(ci) 6= ki+1 holds.

Now, we consider the function θ : dom(S)→ TQM∪ΓM∪{f,a} defined by
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Assuming that a transducer is only given input trees that have the desired form, this function
is realizable by a deterministic top-down tree transducer, e.g., by some transducer that
produces no output in the first step, continues at the right child and then simply copies the
rest of the input tree.

Assume that M does not halt on the empty input tape and consider an input tree
t ∈ dom(S), then there are configurations ci and ci+1 such that ci+1 is not the successor
configuration of ci. The transformation θ yields ci+1 = ki+1, it follows that succ(ci) 6= ki+1,
i.e., (t, θ(t)) ∈ S. Conversely, assume that M halts on the empty input tape. Consider
an input tree t ∈ dom(S) such that c0c1 · · · cn is the halting configuration sequence. It
follows that ki+1 = succ(ci) = ci+1 for all i ∈ {0, . . . , n− 1}, i.e., (t, θ(t)) /∈ S. Clearly, S is
uniformized by θ if, and only if, M does not halt on the empty input tape.

However, the specification S does not suffice to enforce that this kind of transformation
is the only possible uniformizer. This can be achieved by extending the alphabet and the
specification. J

From the undecidability proof one can derive that the uniformization problems remain
undecidable if we restrict the D↓TTs, as stated in the following two theorems. Together
with the decidability result from Section 4.1 this gives an almost complete picture of the
frontier between decidability and undecidability (for the case of all tree-automatic relations
as specifications, and subclasses of D↓TTs as uniformizers).

I Theorem 3. It is undecidable whether a given tree-automatic relation has a uniformization
by a linear deterministic top-down tree transducer with delay bounded by 1.

I Theorem 4. It is undecidable whether a given tree-automatic relation has a uniformization
by a synchronous deterministic top-down tree transducer.

4 Decidability Results

In the previous section we have seen that the uniformization problem for general tree-
automatic specifications is undecidable. In order to regain decidability of the uniformization
problem for non-deterministic top-down specifications we present two approaches. In Section
4.1, we consider general non-deterministic top-down specifications and restrict the uni-
formizer, whereas in Section 4.2 we consider a restricted class of non-deterministic top-down
specifications and ask whether there is a synchronous uniformizer.

4.1 Path-preserving uniformization
In this section, we consider general non-deterministic tree relations and restrict the uniformizer;
we are looking for a uniformization by a deterministic path-preserving top-down transducer.
We solve the following uniformization problem.

I Theorem 5. It is decidable whether a given tree-automatic relation has a uniformization
by a deterministic path-preserving top-down tree transducer.

In the following we show that deciding whether a general non-deterministic top-down
tree relation has a path-preserving uniformization reduces to deciding the winner in a safety
game between two players. We show that the use of guidable tree automata [17] for the
specifications makes it feasible to adapt a decision procedure presented in [18], where the
uniformization problem for deterministic top-down tree relations was reduced to deciding
the winner in a safety game.
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Before we present the decision procedure, we need to fix some notations. Given Σ =⋃m
i=0 Σi, let dirΣ = {1, . . . ,m} be the set of directions compatible with Σ. For Σ =

⋃m
i=0 Σi,

the set PathΣ of labeled paths over Σ is defined inductively by:
ε is a labeled input path and each f ∈ Σ is a labeled input path,
given a labeled input path π = x·f with f ∈ Σi (i > 0) over Σ, then π ·jg with j ∈ {1, . . . , i}

and g ∈ Σ is a labeled input path.
For π ∈ PathΣ, we define the path path(π) ∈ dir∗Σ and the word labels(π) ∈ Σ∗ induced

by π inductively by:
if π = ε or π = f , then path(ε) = path(f) = ε, labels(ε) = ε and labels(f) = f ,
if π = x · jf with j ∈ dirΣ, f ∈ Σ, then path(π) = path(x) · j, labels(π) = labels(x) · f .
The length || || of a labeled path over Σ is the length of the word induced by its path, i.e.,

||π|| = |labels(π)|.
For π ∈ PathΣ let TπΣ := {t ∈ TΣ | valt

(
path(π)[1, (i−1)]

)
= labels(π)[i] for 1 ≤ i ≤ ||π||}

be the set of trees t over Σ such that π is a prefix of a labeled path through t. For a tree-
automatic relation R ⊆ TΣ × TΓ recognized by an N↓TA A, π ∈ PathΣ and q ∈ QA let
Rπ := {(t, t′) ∈ R | t ∈ TπΣ} and Rπq := {(t, t′) ∈ R(Aq) | t ∈ TπΣ}.

Since we consider labeled paths through trees, it is convenient to define the notion
of convolution also for labeled paths. For a labeled path x ∈ PathΣ with ||x|| > 0, let
domx := {u ∈ dir∗Σ | u v path(x)} and valx : domx → Σ, where valx(u) = labels(x)[i]
if u ∈ domx with |u| = i + 1. Let x ∈ PathΣ, y ∈ PathΓ with path(y) v path(x) or
path(x) v path(y), then the convolution of x and y is x⊗y defined by domx⊗y = domx∪domy,
and valx⊗y(u) = (val⊥x (u), val⊥y (u)) for all u ∈ domx⊗y, where val⊥x (u) = valx(u) if u ∈ domx

and val⊥x (u) = ⊥ otherwise, analogously defined for val⊥y (u).
Furthermore, it is useful to relax the notion of runs to labeled paths. Let x ∈ PathΣ,

y ∈ PathΓ such that x ⊗ y is defined, i.e., path(y) v path(x) or path(x) v path(y). We
define the run of A on x⊗ y such that it maps all nodes from domx⊗y as well as all nodes
that are a direct successor of a node from domx⊗y to a state of A. Formally, let the (partial)
run of A on x⊗ y be the partial function ρ : dir∗Σ → QA such that ρ(ε) = qA0 , and for each
u ∈ domx⊗y: if q := ρ(u) is defined and there is a transition (q, valx⊗y(u), q1, . . . , qi) ∈ ∆A,
then ρ(u.j) = qj for all j ∈ {1, . . . , i}. Let path(x ⊗ y) = v and i ∈ dirΣ. Shorthand, we
write A : qA0

x⊗y−−−→i q, if q := ρ(vi) is defined. We write A : qA0
x⊗y−−−→ Acc if rk(valx⊗y(v)) = 0

and (ρ(v), valx⊗y(v)) ∈ ∆A to indicate that the (partial) run ρ of A on x⊗ y is accepting.
We explicitly state a simple lemma that is used in several places.

I Lemma 6 ([18]). Given a ↓TA A and a state q of A, the following properties are decidable:
1. ∀t ∈ TΣ : t⊗⊥ ∈ T (Aq), 2. ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq), 3. ∃t′ ∈ TΓ ∀t ∈ TΣ : t⊗ t′ ∈ T (Aq).

Towards the decision procedure, we consider the relationship between the delay that a
transducer introduces and uniformizability. Intuitively, if a specification is uniformized by
a transducer such that the uniformizer introduces long delays between outputs, then only
one path in an input tree is relevant in order to determine an output tree. We express this
property by introducing the term path-recognizable function, meaning that there is a D↓TT
that first deterministically reads a path from the root to a leaf in an input tree and then
outputs a matching output tree. Note that such a uniformizer is always path-preserving.

Formally, we say a relation R ⊆ TΣ × TΓ is uniformizable by a path-recognizable function,
if there exists a D↓TT T that uniformizes R such that ∆T only contains transitions of the
following form: 1. q(f(x1, . . . , xi)) → q′(xj), or 2. q(a) → t, where f ∈ Σi, i > 0, a ∈ Σ0,
q, q′ ∈ QT and j ∈ {1, . . . , i} and t ∈ TΓ.

This notion was introduced in [18], where it was shown to be decidable whether a top-down
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deterministic relation can be uniformized by a path-recognizable function. Using guidable
automata, the result carries over to general tree-automatic relations.

I Theorem 7. It is decidable whether a given tree-automatic relation can be uniformized by
a path-recognizable function.

Given a specification, we can show that there exists a computable bound with the
following property: If it is necessary for a D↓PTT to introduce delay that exceeds the bound
in order to satisfy the specification, then either the remaining specification has a simple
uniformization by a path-recognizable function, which is decidable by the above theorem, or
is not D↓PTT-uniformizable.

Towards the definition of the game, we need one more notion. We introduce a relation that
contains state transformations of a given specification automaton that a labeled path together
with some output sequence on this path induces. However, we are only interested in the result
of a state transformation if it suffices for a uniformizer to read this labeled path segment
in an input tree to (partially) determine a matching output tree. Formally, let x ∈ PathΣ,
y ∈ PathΓ and i ∈ dirΣ such that x⊗ y is defined. We define the relation τxi,y ⊆ QA ×QA
such that (q, q′) ∈ τxi,y if there is a partial run ρq of Aq on x⊗ y with Aq : q x⊗y−−−→i q

′ and for
each uj with u ∈ domx⊗y, uj 6v path(x⊗ y)i, and j ∈ {1, . . . , rk

(
(val⊥x (u), val⊥y (u))

)
} holds

if r := ρq(uj) and j ≤ rk(val⊥x (u)), rk(val⊥y (u)), then there exists t′ ∈ TΓ such that
t⊗ t′ ∈ T (Ar) for all t ∈ TΣ, and

if r := ρq(uj) and rk(val⊥y (u)) < j ≤ rk(val⊥x (u)), then t⊗⊥ ∈ T (Ar) for all t ∈ TΣ, and
if r := ρq(uj) and rk(val⊥x (u)) < j ≤ rk(val⊥y (u)), then there exists t′ ∈ TΓ such that

⊥⊗ t′ ∈ T (Ar).
Lemma 6 implies that it is decidable whether (q, q′) ∈ τxi,y. Basically, if q is in the domain
of τxi,y, then there exists a fixed (partial) output tree s′ ∈ Syi◦Γ such that for each input tree
t ∈ T xΣ ∩ dom(T (Aq)) there exists some t′ ∈ TΓ such that t⊗ (s′ · t′) ∈ T (Aq).

Now, we are ready to show that the uniformization problem posed in this section reduces
to deciding the winner in a safety game, provided that the specification is given by a guidable
automaton. The game is played between In and Out on a game graph parameterized by k,
where In can follow any path from the root to a leaf in an input tree such that In plays one
input symbol at a time. Out can either react with an output symbol, or delay the output a
bounded number of times (at most 2k times) and react with a direction in which In should
continue with his input sequence. As stated after Theorem 7, when the output delay increases
to a computable bound, then uniformization is either impossible or can be realized by a
path-recognizable function (Out then wins automatically, see o4. in the construction below).
To make the decision procedure sound, the parameter k has to be chosen as this bound.

Given a tree-automatic relation R ⊆ TΣ × TΓ, we assume its domain to be deterministic,
otherwise no deterministic ↓TT can recognize the domain. Let R be recognized by a guidable
N↓TA A and let dom(R) be recognized by a D↓TA B. Formally, the game graph GkA,B is
constructed as follows.

VIn = {
(
p, q, πj

)
∈ QB×QA×PathΣ ·dirΣ | ‖π‖ ≤ 2k+1, π ∈ PathΣ, j ∈ dirΣ}∪2QB×QA

is the set of vertices of player In including the initial vertex {(qB0 , qA0 )}.
VOut = {

(
p, q, π

)
∈ QB ×QA × PathΣ | ‖π‖ ≤ 2k + 1} is the set of vertices of player Out.

From a vertex of In the following moves are possible:
i1.

(
p, q, πj

)
→
(
p, q, πjf

)
for each f ∈ Σ such that B : p π−→j p′ and there exists

(p′, f, p1, . . . , pi) ∈ ∆B if ‖π‖ < 2k + 1 (delay; In chooses the next input symbol)
i2. {(p1, q1), . . . , (pn, qn)}→

(
pj , qj , f

)
for each f ∈Σ such that there is (pj , f, p1

j , . . . , p
i
j)∈

∆B and each j ∈ {1, . . . , n} (no delay; In chooses the next direction and input symbol)
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From a vertex of Out the following moves are possible:
o1.

(
p, q, f

) r→ {(p1, q1), . . . , (pi, qi)} if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A,
(p, f, p1, . . . , pi) ∈ ∆B, f ∈ Σ is i-ary, g ∈ Σ⊥ is j-ary, n = max{i, j}, and if j > i

there exist trees ti+1, . . . , tj ∈ TΓ such that ⊥⊗ t` ∈ T (Aql
) for all i < ` ≤ j.

(no delay; Out applies a transition; Out can pick output trees for all directions where the
input has ended; In can continue from the other directions)

Note, if f ∈ Σ0, i.e., the input symbol is a leaf, then the next reached vertex is ∅ ∈ VIn,
which is a terminal vertex.

o2.
(
p, q, fjπ

) r→
(
pj , qj , π

)
if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A such that (q, qj) ∈

τfj,g and (p, f, p1, . . . , pi) ∈ ∆B.
(delay; Out applies a transition, removes the leftmost input symbol and advances in direction

of the labeled path ahead; Out can pick output trees for all divergent directions)
o3.

(
p, q, πjf

)
→
(
p, q, πjfj′

)
for each j′ ∈ {1, . . . , i} for f ∈ Σi if ‖πjf‖ < k + 1

(Out delays and chooses a direction from where In should continue)
o4.

(
p, q, π

)
→
(
p, q, π

)
if Rπq is uniformizable by a path-recognizable function.

(Out stays in this vertex and wins)
Note that the game graph can effectively be constructed, because Lemma 6 and Theorem 7
imply that it is decidable whether the edge constraints are satisfied.

The desired winning condition expresses that player Out loses the game if the input can
be extended, but no valid output can be produced. This is represented in the game graph by
a set of bad vertices B that contains all vertices of Out with no outgoing edges. If one of these
vertices is reached during a play, Out loses the game. Thus, we define GkA,B = (GkA,B, V \B)
as safety game for Out.

The following two lemmata show that from the existence of a winning strategy a top-down
tree transducer that uniformizer the relation can be obtained and vice versa.

I Lemma 8. Given k, if Out has a winning strategy in GkA,B, then R is D↓PTT-uniformizable.

The key idea in order to lift the proof in [18] from deterministic to general non-deterministic
specifications is, given a guidable automaton for the specification, to turn a uniformizer into
a guide for the specification automaton in order to construct a winning strategy.

I Lemma 9. If R is D↓PTT-uniformizable, then Out has a winning strategy in GkA,B, where
k is a number effectively computable from A.

As a consequence of Lemmata 8 and 9 and the fact that a winning strategy for Out in
GkA,B can effectively be computed, together with the fact that for each tree-automatic relation
a guidable N↓TA can effectively be constructed, see [17], we immediately obtain Theorem 5.

4.2 Union of top-down deterministic specifications
In this section, we assume that R ⊆ TΣ × TΓ is given as the union

⋃n
i=1Ri of n relations

with pairwise disjoint domains, where each Ri is recognized by a D↓TA Ai and its domain
is recognized by a D↓TA Bi. Furthermore, we assume that the domain of the relation is
D↓TA-recognizable, otherwise there exists no uniformization by a deterministic top-down
tree transducer.

I Example 10. Let Σ be an input alphabet given by Σ1 = {h} and Σ0 = {c, d} and let Γ be an
output alphabet given by Γ2 = {f}, Γ1 = {h} and Γ0 = {c, d}. We consider the relation R ⊆
TΣ× TΓ defined by {(h(t), f(t, t′)) | t, t′ ∈ TΣ such that t and t′ have the same leaf symbol}.
This specification can be obtained by the union of two deterministic top-down specifications,



C. Löding and S. Winter 66:11

one specification for each leaf symbol. Clearly, a deterministic top-down transducer can
realize the specification by producing f(t, t) for a unary input tree h(t), e.g., by starting
with q0(h(x1))→ f(q(x1), q(x1)). However, there is no linear synchronous uniformizer for R,
because in the first step a linear D↓TT would have to pick for either the right or the left
subtree an output tree with a fixed leaf symbol. As the actual leaf symbol of the input tree
is yet unknown it is not possible to fix a correct output tree.

We provide a decision procedure for the following problem.

I Theorem 11. It is decidable whether the union of D↓TA-recognizable relations with pairwise
disjoint D↓TA-recognizable domains has a uniformization by a synchronous deterministic
top-down tree transducer.

We show that the existence of a synchronous uniformizer for such a relation is a regular
property over infinite trees that can be checked by a parity tree automaton. For an intro-
duction to parity tree automata, see e.g. [24]. We define a regular infinite tree, given as the
unfolding of a finite graph, such that each vertex of the infinite tree represents a node in
an input tree together with a set of output nodes produced from this input node. Since the
uniformizer might be non-linear, output at different positions in the output tree can depend
on the same position in the input tree. Our construction bounds the number of required
output choices by making the choice only depending on the state transformation that the
current output sequences together with the input sequence induces.

Before we formally define the finite graph, we describe its components. Recall, R =⋃n
i=1Ri, where Ri is recognized by a D↓TA Ai and dom(R) is recognized by a D↓TA D.

The graph keeps track of the state of D on the input, and the states of A1, . . . ,An on the
produced output. For the latter we use vectors with n elements. We define a function λ`
that returns the `th element of a vector, for each 1 ≤ ` ≤ n. Let L denote such a vector,
then λ`(L) stores the information w.r.t. A`. We model that read input and produced output
can be on the same or on divergent paths as follows: In case that input and output are on
the same path, λ`(L) is the state of A` on the combined input sequence and output sequence.
In case that the output is mapped to a divergent path, λ`(L) is a set of states of A` that is
obtained by combining all possible input sequences with the produced output sequence. Now
we are ready to formally define the graph G:

From a vertex v of the form (p, {L1, . . . , Lm}), where p is a state of D and each Lj is a
vector of states resp. sets of states over A1, . . . ,An, the following edges exist:
v → (v, f) if there is (p, f, p1 . . . , pi) ∈ ∆D (edges for every possible input symbol)

An edge ((p, {L1, . . . , Lm}), f) o1,...,om→ [(p1, Q1), . . . , (pi, Qi)] defining output choices
o1, . . . , om exists if (p, f, p1 . . . , pi) ∈ ∆D and the following conditions hold:
oj ∈ Γ(Xi) for each 1 ≤ j ≤ m, and

(for each Lj an output oj consisting of one symbol and directions to continue is chosen)
the set Qd is constructed as follows for each 1 ≤ d ≤ i:
if for output oj = g(xj1 , . . . , xjr

) there is k ∈ {1, . . . , r} with jk = d,
(the kth child of the output oj depends on the dth child of the input)

we add a vector Vk to Qd, where the component λ`(Vk) referring to A` is build up
from λ`(Lj) and oj as follows:
∗ if λ`(Lj) ∈ QA`

, say q ∈ QA`
, (input and output are at the same position)

and there is (q, (f, g), q1, . . . , qmax{rk(f),rk(g)}) ∈ ∆A`
,

then λ`(Vk) =
{
qk if d = k, (input and output continue in the same direction)

{qk} otherwise. (input and output continue in divergent directions)
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(the corresponding transition in A` is applied)
∗ if λ`(Lj) ∈ 2QA` , (input and output are on divergent paths)

then set λ`(Vk) to ∅ and for each q ∈ λ`(Lj) and each f ′ ∈ Σ such that there is
(q, (f ′, g), q1, . . . , qmax{rk(f ′),rk(g)}) ∈ ∆A`

, add qk to λ`(Vk).
(all possibly reachable states in A` are collected)

From [v1, . . . , vi] an edge to vj exists for all 1 ≤ j ≤ i. (edges to all directions)
The initial vertex is (p0, {L}), where L = [qA1

0 , . . . , qAn
0 ] and p0 is the initial state of D.

Now that we have defined G, we consider the unfolding H of G which is a regular infinite
tree. Consequently, each vertex of H is associated with a labeled path, interpreted as an
input sequence π, and additionally it is associated with a bounded number of labeled paths,
interpreted as output sequences produced by a transducer while reading the input sequence
π. Note that different vertices of H may represent the same input sequence, but differ in the
associated output sequences. This is a regular infinite tree that has the desired property,
namely, each input sequence together with a (sufficiently large) number of possible output
sequences is represented in the tree.

Our goal is to construct a parity tree automaton, whose tree language is non-empty iff R
has a uniformization by a synchronous deterministic top-down tree transducer. The idea is
to annotate H with an output strategy σ. The strategy selects for each node of the form
(v, f) with f ∈ Σ one child, i.e., σ fixes an output choice. Let H_σ denote the tree H with
annotations encoding σ. Given H_σ and some input tree t ∈ dom(R), the output choices
defined by σ identify a unique output tree that a D↓TT can produce while reading t. For an
input tree t, let σ(t) denote the corresponding output tree. The strategy σ corresponds to a
uniformizer if for all t ∈ dom(R) holds that (t, σ(t)) ∈ R. The following lemma shows that
the set of trees H_σ such that σ corresponds to a uniformizer is a regular set of trees.

I Lemma 12. There exists a parity tree automaton C that accepts exactly those trees H_σ
such that (t, σ(t)) ∈ R for all t ∈ dom(R).

The next lemma shows that the uniformization problem posed in this section reduces to
deciding the emptiness problem for C. It directly implies Theorem 11 because emptiness of
parity tree automata is decidable (see [24]).

I Lemma 13. The tree language T (C) is non-empty if, and only if, R has a uniformization
by a synchronous deterministic top-down tree transducer.

5 Conclusion

We have considered uniformization of tree-automatic relations by D↓TTs. Using the subclasses
of bounded-delay, linear, and path-preserving D↓TTs, we have obtained an almost complete
picture of the frontier between decidability and undecidability. We have also presented a class
of tree-automatic relations for which the uniformization problem is decidable but requires, in
general, non-linear uniformizers.

As further research questions it would be interesting to extend the class of specifications
beyond those of tree-automatic relations. In [6] decidability results for word transformations
have been obtained for deterministic rational relations, and for uniformization questions in
which the delay of the uniformizer is related to the one of the specification. We plan to study
extensions of these ideas from words to trees.
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A Details for Section 3

I Theorem 2. It is undecidable whether a given tree-automatic relation has a uniformization
by a deterministic top-down tree transducer.

Proof. We build on the description of the proof idea given in the main part. We describe
the desired specification RM which is a refined version of S such that the following holds: If
M halts on the empty tape, then RM is D↓TT-uniformizable in a θ-like fashion. Otherwise,
if M does not halt on the empty tape, then RM is not D↓TT-uniformizable.

First, we need to adapt the form of the input and output trees as follows. From now on,
an input tree over Σ with Σ = QM ∪ ΓM ∪ {f, g, a, b, A,B} is said to be a correct coding if it
is of the form

$

C0

$

C1

... $

Cn

X ,

where $ ∈ {f, g}, X ∈ {A,B} is a special leaf symbol, and each Ci is a binary tree of the
form

u1 u2 ... u(k−1) uk q v1 v2 ... v(`−1) v` β`+1

β`β(`−1)β2β1β0αkα(k−1)α2α1

,

where u1, . . . , uk, v1, . . . , v` ∈ ΓM , q ∈ QM , α1, . . . , αk, β0, β1, . . . , β`, β`+1 ∈ {a, b} are leaf
symbols and u1 . . . ukqv1 . . . v` encodes the configuration ci. Wlog, let |u1 . . . uk| ≥ 2 and
|v1 . . . v`| ≥ 1. Furthermore, c0 is the initial configuration on the empty input tape and cn is
a halting configuration. The special letter X determines which requirements an output tree
(additionally to being a correct coding; the form of a correct coding is specified below) has
to satisfy.

We actually can show a more specific statement than the statement given in this theorem.
Our goal is two give two variants of RM such that the following holds. If M halts on the
empty input tape, then the first resp. second RM -variant can be uniformized by a linear
D↓TT with delay bounded by 1 resp. by a synchronous D↓TT. Otherwise, if M does not
halt on the empty input tape, then non of the variants is D↓TT-uniformizable. Therefore,
we distinguish between two (very similar) variants of RM in the remainder of this proof.

An output tree over Σ resp. over Σ ∪ {•} is said to be a correct coding if it is of the form

https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.1007/978-0-8176-4842-8_1
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(Variant 1)
$

K1

$

K2

... $

Km

X
resp. (Variant 2)

$
•
K1

$
•
K2

... $
•
Km

X

,

where $ ∈ {f, g}, X ∈ {A,B}, and each Ki is a binary tree of the form

u1 u2 ... u(k′−1) uk′ q v1 v2 ... v(`′−1) v`′ β`′+1

β`′β(`′−1)β2β1β0αk′α(k′−1)α2α1

,

where u1, . . . , uk′ , v1, . . . , v`′ ∈ ΓM , q ∈ QM , α1, . . . , αk′ , β0, β1, . . . , β`′ , β`′+1 ∈ {a, b} are
leaf symbols and u1 . . . uk′qv1 . . . v`′ encodes the configuration ki. The occurrences of • are
introduced because for the second variant we want to be able to construct a synchronous
uniformizer for RM if M halts on the empty tape.

We are ready to define the (two variants of) RM . For notational convenience, let Ci(αj)
refer to the αj-position in the Ci-tree and let val

(
Ci(αj)

)
refer to its value, and so on. Since

the two RM -variants are very similar, the requirements given below should be satisfied in
both variants if not stated explicitly otherwise. The specification RM contains a pair of
trees (t, t′) from TΣ × TΣ resp. TΣ × TΣ∪{•} if conditions 1., 2., A., and B. are satisfied, or
condition 3. is satisfied.

1. t is a correct coding and t′ is a correct (V1- resp. V2-)coding with m = n.
2. Recall, w.r.t. positions, 2i is short for the node 2 . . . 2︸ ︷︷ ︸

i times

and 20 is short for the root ε.

Depending on the variant, we require that

V1. valt′(2i) = valt(2i+1) for all i ∈ {0, . . . , n− 1}, resp.
V2. valt′(2i) = valt(2i) for all i ∈ {0, . . . , n− 1}.

Furthermore, we require that

A. if the right-most leaf of t is A, then there is an i ∈ {0, . . . , n−1} such that succ(ci) 6= ki+1.

Next, we add additional requirements to enforce the desired θ-like transformation. Recall,
we want to ensure that a transformation yields ki = ci for all i ∈ {1, . . . , n}. However, ki
and ci do not overlap in t ⊗ t′, and we have to make sure that the specification remains
tree-automatic. Since the length of configurations can be arbitrarily large, we can only talk
about a finite amount of positions.

The principle behind the next requirements is that a D↓TT is not aware of the next
symbol in a configuration. Since a D↓TT can make no guesses, it then has to fulfill the
requirements for all positions to be safe, because the current position could already be the
position in question.

Therefore, in order to guarantee ki = ci for all i ∈ {1, . . . , n}, we require that

B. if the right-most leaf of t is B, then for all i ∈ {1, . . . , n} holds

val
(
Ki(αk′−1)

)
= val

(
Ci(αk−1)

)
, and

val
(
Ki(uk′)

)
= val

(
Ci(uk)

)
, and

val
(
Ki(αk′)

)
= val

(
Ci(αk)

)
, and

val
(
Ki(q)

)
= val

(
Ci(q)

)
, and

val
(
Ki(β0)

)
= val

(
Ci(β0)

)
, and

val
(
Ki(v1)

)
= val

(
Ci(v1)

)
, and

val
(
Ki(β`′−1)

)
= val

(
Ci(β`−1)

)
, and

val
(
Ki(v`′)

)
= val

(
Ci(v`)

)
.
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fC0

gC1

fC2

gC3

q0

(a) initial config. c0

fC0

gC1

fC2

gC3

fq

q0

(b) config. c1

fC0

gC1

fC2

gC3

f•qc

gq

q0

(c) config. c2

fC0

gC1

fC2

gC3

f•qc

g•qc

fq

q0

(d) config. c3

Figure 2 Illustration of the functioning of the D↓TT T2 as defined in the proof of Theorem 2. A pos-
sible configuration sequence c0 to c3 of T2 on an input tree of the form f(C0, g(C1, f(C2, g(C3, . . . ))))
is shown. The input tree is always depicted on the left-hand side and the so far produced output
tree on the right-hand side of each subfigure. The respective mapping of output positions to read
input positions in shown in gray.

Finally, in order to make the specification RM total, we include also all pairs of trees (t, t′)
from TΣ × TΣ resp. TΣ × TΣ∪{•} such that

3. t is not a correct coding.

We argue that RM defines a tree-automatic specification. First, note that the conditions
1., 2., and 3. are clearly tree-automatic. A specification automaton guesses whether conditions
1., 2., A., and B. are satisfied, or whether condition 3. is satisfied. Depending on its guess,
it checks that the respective requirements hold. Since the if-conditions of A. and B. are
mutual exclusive, the automaton guesses the right-most leaf symbol in t and verifies that
the respective then-condition is satisfied and also verifies that the guess of the leaf-symbol
was correct. To verify the then-condition of A., the automaton guesses a ci-configuration
branch and verifies that succ(ci) 6= ki+1 is true. This can be done, because ci and ki+1
overlap. To verify the then-condition of B., the automaton guesses and verifies the correct
labeling of the 16 positions in question for each pair of ki-configuration branch and successive
ci-configuration branch.

We claim that each variant of RM is uniformizable if, and only if, M does not halt on
the empty input tape. If M does not halt, then the first resp. second RM -variant can be
uniformized by a linear D↓TT T1 = (Q1,Σ,Σ, q0,∆1) with delay bounded by 1 resp. by a
synchronous D↓TT T2 = (Q2,Σ,Σ ∪ {•}, q0,∆2). The part of the transition rules relevant
for input trees that are a correct coding is given below. The state qc stands for “copy”-state.
An illustration of the functioning of the latter transducer is shown in Figure 2.

Let ∆1 = { q0($(x1, x2))→ qc(x2) for all $ ∈ {f, g},
qc(σ(x1, . . . , xi))→ σ(qc(x1), . . . , qc(xi)) for all σ ∈ Σi, i ≥ 0 }.

Let ∆2 = { q0($(x1, x2))→ $(q(x2), q0(x2)) for all $ ∈ {f, g},
q0(X)→ X for all X ∈ {A,B},

q($(x1, x2))→ •(qc(x1)) for all $ ∈ {f, g},
qc(σ(x1, . . . , xi))→ σ(qc(x1), . . . , qc(xi)) for all σ ∈ Σi, i ≥ 0 }.

It is easy to see that T1 uniformizes the first RM -variant and T2 uniformizes the second
RM -variant; the same argumentation as for θ and S can be applied.

Conversely, assume M does halt on the empty input tape. We show that neither the first
nor the second RM -variant is D↓TT-uniformizable. Towards a contradiction, assume there
exist uniformizer U1 and U2 of the first resp. second RM -variant.
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To begin with, we show that U1 produces no output in the first computation step. For
the first RM -variant it has to hold that the root symbol of the output tree is equal to the
second symbol on the right-most path of the input tree (condition 2.), hence U1 has to delay
at first.

Next we show that (apart from the first step of U1) both U1 and U2 work synchronously
and the transformation yields ci = ki for all i ∈ {1, . . . , n} for both uniformizers. Since the
argumentation is analogous for U1 and U2, in the following we only talk about U1 and the
first RM -variant.

Consider an input tree t that is a valid coding and let t′ denote the output tree produced
by U1. First, we show that the right-most path in t′ is produced synchronously (after the
initial delay of 1). We distinguish two cases. For the first case, assume at some point U1
produces at once more than one output symbol mapped to the right-most path. Say, U1 reads
the node 2i+1 in t and produces output at the nodes 2i and 2i+1 in t′. Let valt′(2i+1) = f .
If the next input symbol at 2i+2 is g, then condition 2. is not satisfied. For the second case,
assume U1 reads the node 2i+1 and produces no output. Either U1 continues to read at node
2i+11 or at 2i+12. At the left child, the ci-configuration branch begins. If the input tree
ends in B, ci has to be read in order to make it possible to satisfy the then-condition of B.,
thus U1 has to continue reading at 2i+11. As a consequence, the right-most path can not be
accessed any longer. However, the right-hand path must also be fully read by U1 in order to
satisfy condition 2..

Secondly, we show that U1 synchronously realizes ki = ci for all i ∈ {1, . . . , n}. From the
previous paragraph we know that output configuration branches are produced independent
of the label of the rightmost leaf. Since the leaf could be a B, U1 must have produced t′ such
that the then-condition of B. is satisfied. Also we know from the previous paragraph that
when U1 reads the first position of the ci-configuration branch, then the output produced in
this computation step will be mapped to the first position of the ki-configuration branch.

We now show that in order to satisfy the then-condition of B. the uniformizer U1 must
synchronously copy Ci. Let us build symbol-by-symbol a tree Ci coding a configuration
of the form u1 . . . ukqv1 . . . v` meaning we give a symbol in Ci, consider one computation
step from U1 and react with another symbol from Ci and so on. Assume at some point the
uniformizer does not exactly copy the input symbol, let us call this a copy mistake. We
distinguish whether a mistake happens in the part before the q-position, at the q-position, or
after the q-position in ci.

First, assume a position Ci(uj) is read and in the corresponding computation step a
copy mistake occurs, which means U1 either produces no output symbol, or more than one
and/or the wrong output symbol. Then, we let the next input symbol be the state of the
configuration ci, i.e., we let Ci(uj) = Ci(uk). Assume no output was produced, then U1
can continue to read at either Ci(αk) or Ci(q), but both positions have to be read in order
to satisfy val

(
Ki(αk′)

)
= val

(
Ci(αk)

)
and val

(
Ki(q)

)
= val

(
Ci(q)

)
. Now assume, more

and/or wrong output has been produced. We illustrate this case in Figure 3. Recall that
val
(
Ci(αk−1)

)
= val

(
Ki(αk′−1)

)
has to be satisfied. Since Ci(αk−1) is left of Ci(uk−1) and

Ci(αk) is right of Ci(uk−1), the U1-state reached at Ci(αk) is independent of val
(
Ci(αk−1)

)
.

Note that output at Ki(αk′−1) has been produced at the earliest when U1 reads Ci(αk),
because in this step either more than one symbol has been produced, or if the symbol
was wrong, then at some point later another one with val

(
Ci(vk)

)
is produced to satisfy

val
(
Ki(vk′)

)
= val

(
Ci(vk)

)
. Hence, the input symbol at Ci(αk−1) can be changed without

affecting the output symbol that is produced at Ki(αk′−1). Thus, making the copy mistake
would not guarantee val

(
Ki(αk′−1))

)
= val

(
Ci(αk−1))

)
.
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Secondly, assume a copy mistake occurs at Ci(q). Assume the copy mistake was to delay
the output, then not both Ci(β0) and Ci(v1) can be read, but knowledge of both values is
needed to satisfy the specification. So, assume the copy mistake was to produce more or wrong
output. If an output symbol was produced that belongs to the part before the q-position of ki,
then eventually a symbol at Ki(αk′) is produced. However, this is done without knowledge of
val
(
Ci(αk)

)
, because the output at Ki(αk′) is produced after U1 reads Ci(q). Since Ci(αk)

is left of Ci(uk) and Ci(q) is right of Ci(uk), the U1-state reached at Ci(q) is independent
of val

(
Ci(αk)

)
. Hence we can chose val

(
Ci(αk)

)
to be different from val

(
Ki(αk′)

)
. Or, if

an output symbol was produced that belongs to the part after the q-position of ki, then
val
(
Ki(v1))

)
is determined before Ci(v1) is read. Thus, val

(
Ki(v1))

)
= val

(
Ci(v1))

)
is not

ensured. We have ruled out that a copy mistake occurs at Ci(q).
Lastly, assume a copy mistake occurs at a position Ci(vj), then let Ci(vj) = Ci(v`) and

the next input symbol is the leaf at Ci(β`+1). With the same argumentation as in the
previous cases, we can show that a uniformizer cannot make such a mistake.

Altogether, we can conclude that both U1 and U2 always realize ki = ci for all i ∈
{1, . . . , n}. Now consider an input tree that is a correct coding and ends in A and codes
the halting configuration sequence c0c1 . . . cn, then succ(ci) = ki+1 for all i ∈ {0, . . . , n− 1}.
Thus, condition A. is not satisfied. This contradicts that U1 and U2 uniformize the first resp.
second RM -variant. J

B Details for Section 4.1

This section is concerned with the the proof of Theorem 5.

I Theorem 5. It is decidable whether a given tree-automatic relation has a uniformization
by a deterministic path-preserving top-down tree transducer.

As already stated in Section 4.1, the decision procedure for the above question is an
adaption of the decision procedure for deterministic top-down tree-automatic relations
presented in [18]. Here, we follow the same proof structure and lift the introduced notions
and auxiliary lemmas used in [18] from deterministic tree-automatic relations to general
tree-automatic relations.

We start with introducing some additional notations. For some of the proofs, it is
convenient to concatenate a special tree with a single letter, instead of a tree. For t ∈ SΣ and
f ∈ Σi, i ≥ 0, let t · f denote the result of replacing ◦ with f in t. Formally, if i > 0, then the
result is not a tree over Σ, but we treat it as such. In particular, for a D↓TT T , we define
T (t · f) as T (t) ·w[q1, . . . , qn] if there is q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn

)] ∈ ∆T and
there is a configuration c = (t, T (t), ϕ) with u ∈ domT (t) such that ϕ(u) = v, valt(v) = ◦
and valT (t)(u) = q. In words, when T reads this special f output is produced even though f
has no child nodes.

For t ∈ TΣ and u ∈ dir∗Σ, let ||t||u := max{|v| | v ∈ domt and (u v v or v v u)}. If
u ∈ domt, then ||t||u is the length of a maximal path in t through u. Otherwise, if u /∈ domt,
then ||t||u is the length of the unique path in t that is a prefix of u.

Sometimes it is sufficient to consider only the output that is mapped to a certain path.
For a D↓TT T , an input tree t ∈ TΣ or t ∈ SΣ and a path u ∈ dir∗Σ, we define

outT (t, u) := {π ∈ PathΓ | T (t) ∈ TπΓ (X) and
(path(π) v u or u v path(π)) and ||T (t)||u = |path(π)|}
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u1

α1

u(j−1)

α(j−1) uj

αj ?

u1

α1

u(j−1)

α(j−1)

(a) U1 reads Ci(uj). Output produced by U1
from here is independent of val(Ci(αj−1)).

u1

α1

u(j−1)

α(j−1) uj

αj ?

u1

α1

u(j−1)

α(j−1) uj

(b) U1 has produced Ki(uj) with
val(Ci(uj)) 6= val(Ki(uj)).

u1

α1

u(k−1)

α(k−1) uk

αk q

β0 v1

u1

α1

u(k−1)

α(k−1) uk

(c) We chose the next input symbol in
Ci to be the state of ci. That makes
Ci(uj) = Ci(uk) and Ki(uj) 6= Ki(uk′) be-
cause val(Ci(uk)) = val(Ki(uk′)) must be
satisfied. Thus k′ > k.

u1

α1

u(k−1)

α(k−1) uk

αk q

β0 v1

β1

u1

α1

u(k−1)

α(k−1) uk

αk

uk′

αk′ q

β0

(d) At some point U1 produces Ki(uk′ ) with
val(Ci(uk)) = val(Ki(uk′)). Ki(αk′−1) is a
node below Ki(uk) independently produced
of val(Ci(αk−1)).

Figure 3 Illustration of a copy mistake made in the part before the q-state in some ci as described
in the proof of Theorem 2. The Ci-tree is always depicted on the left, the Ki-tree on the right. The
respective mapping of output positions to read input positions in shown in gray. The subfigures show
that if U1 makes such a copy mistake then val(Ci(αk−1)) = val(Ki(αk′−1)) can not be guaranteed,
because then we can force U1 to produce Ki(αk′−1) independent of val(Ci(αk−1)).

to be the set of maximal labeled paths in the output tree T (t) through u. Note that if
||T (t)||u < |u|, then outT (t, u) is a singleton set and contains the maximal labeled path π in
T (t) such that path(π) is a prefix of u. Then, we identify outT (t, u) with its single element.

We are ready to prove the following.

I Theorem 7. It is decidable whether a given tree-automatic relation can be uniformized by
a path-recognizable function.

Proof. Let R ⊆ TΣ × TΓ be a tree-automatic relation. We assume that its domain is also
top-down deterministic, otherwise no deterministic top-down tree transducer can verify its
domain. For such a relation, we show that the existence of a uniformizer that realizes a
path-recognizable function is a regular property over infinite trees. The key ingredient of this
proof is an MSO-formula over infinite trees that asserts the existence of such a uniformizer.
We can then use the equivalence between regular and MSO-definable languages over infinite
trees.

The proof is split in two parts. Recall, to describe a path-recognizable function, we have to
reason about labeled paths through input trees and corresponding output trees. Hence, first,
we define a regular infinite tree that is suitable to specify (via MSO) a set of deterministically
readable labeled paths. Secondly, we state an MSO-formula that is satisfiable by this infinite
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tree if, and only if, there exists a finite state uniformizer that realizes a path-recognizable
function.

For the first part, we construct a regular infinite tree by defining a finite graph and
using its unfolding to obtain a regular infinite tree, see e.g. [24]. Intuitively, to be able to
specify labeled paths in this tree, the node labels alternate between directions from dirΣ and
possible input symbols from Σ (if the input has not yet ended). A node labeled by f ∈ Σn,
n > 0 has exactly n children, where the ith child is labeled by i. A direction labeled node
has an f -labeled child for every f ∈ Σ (or ⊥ if it occurs below a leaf-labeled node). For a
node labeled by a leaf symbol a ∈ Σ0, the nodes below form a string with labels alternating
between 1 and ⊥. As a special case, the root is labeled by 0.

Formally, let Σ =
⋃m
i=0 Σi and let B = (QB,Σ, qB0 ,∆B) be a D↓TA that recognizes

dom(R). We want to construct the desired infinite tree w.r.t. the domain of the relation.
Thus, we define the graph G = (V,E) with vertices V ⊆ (QB ∪· {p⊥})× (Σ⊥ ∪{0}∪ dirΣ) and
a set of edges E that include the information of the runs of B, and is defined by{(

(qB0 , 0), (qB0 , f)
)
| f ∈ Σ

}
∪
{(

(p, i), (p, f)
)
| p ∈ QB, i ∈ dirΣ, f ∈ Σ

}
∪
{(

(p, f), (pj , j)
)
| (p, f, p1, . . . , pk) ∈ ∆B, f ∈ Σk, k > 0, j ∈ {1, . . . , k}

}
∪
{(

(p, a), (p⊥, 1)
)
| (p, a) ∈ ∆B, a ∈ Σ0

}
∪
{(

(p⊥, 1), (p⊥,⊥)
)
,
(
(p⊥,⊥), (p⊥, 1)

)}
.

Let (qB0 , 0) be the initial vertex of G and let tG denote the unfolding of G from this initial
vertex.

Now, we give an MSO-formula that is satisfiable by tG if, and only if, R can be uniformized
by a finite state transducer that realizes a path-recognizable function. Let T Inf

V denote
the set of ranked infinite trees over V , the rank of a symbol v ∈ V is the outdegree
of v in G. As usual, an infinite tree t ∈ T Inf

V corresponds to the logical structure t =
(domt, S

t
1, . . . , S

t
m, S

t, (P tv)v∈V ), where Sti = ith successor relation on domt, St :=
⋃m
i=0 S

t
i ,

and P tv := {u ∈ domt | valt(u) = v}. To begin with, we introduce some simple auxiliary
formulas:

Pλ(x) :=
∨

p∈(QB ∪· {p⊥})
P(p,λ)(x) for all λ ∈ (Σ⊥ ∪ {0} ∪ dirΣ), and Pdir(x) :=

m∨
i=0

Pi(x).

Also, formulas for set inclusion, prefix closed sets, and partition are needed:

X ⊆ Y := ∀x
(
X(x)→ Y (x)

)
, φpre(X) := ∀x∀y

(
X(y) ∧ S(x, y)→ X(x)

)
, and

φpart(X1, . . . , Xn) := ∀x

 n∨
i=1

Xi(x) ∧
∧

i 6=j∧i,j∈{1,...,n}

¬(Xi(x) ∧Xj(x))

 .

We give a formula that specifies an infinite labeled path. If such a labeled path contains a
⊥-labeled node, then this labeled path describes a path through a finite input tree.

Path(X) := ∃x
(
P0(x) ∧X(x)

)
∧ ∀x

(
X(x)→ ∃y

[
S(x, y) ∧X(y)∧

∀z
(
S(x, z) ∧X(z)→ y = z

)])
.

Furthermore, we want to specify a formula that is satisfied by a set of labeled paths such
that a transducer is able to deterministically read (along a labeled path from this set)
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through every possible input tree. This is satisfied if for a Σ-labeled node that is part of
the set, exactly one direction-labeled direct successor is specified, and in addition, for a
direction-labeled node that is part of the set, every Σ-labeled direct successor is also part of
the set, ensuring that a transducer can react to every input symbol.

PathSet(X) := ∃x
(
P0(x) ∧X(x)

)
∧ ∀x

(
X(x) ∧ Pdir(x)→ ∀y(S(x, y)→ X(y))

)
∧

∀x
(
X(x) ∧ PΣ(x)→ ∃y (S(x, y) ∧X(y) ∧ ∀z (S(x, z) ∧X(z)→ y = z))

)
.

Ultimately, all formulas are designed to be evaluated in tG . Thus, if (tG , X) |= Path(X)
resp. (tG , X) |= PathSet(X), then X indeed describes a labeled path resp. a set of labeled
paths that can be part of an input tree from the domain of the relation, because tG is designed
w.r.t. the domain of the relation.

Towards our desired formula, given a labeled path and a prefix of this path, we want
to express that there exists an output labeling of the given prefix such that there is an
accepting (partial) run of A on the combination of input labels and output labels on this path.
Additionally, since we want to obtain a path-recognizable function in the end, we require
that the partial run can be extend to a successful run for each input tree that contains this
labeled path, i.e., we require that the run only depends on the given labeled path. Recall,
we already have a formal notion for this. Let A = (QA,Σ⊥ × Γ⊥, qA0 ,∆A) be a guidable
↓TA that recognizes R. For x ∈ PathΣ, y ∈ PathΓ and i ∈ dirΣ such that x⊗ y is defined,
i.e., path(x) v path(y) or path(y) v path(x), the relation τxi,y ⊆ QA ×QA includes a pair
of states (q, q′) of A, if there is a partial run ρ on x⊗ y of Aq with A : q x⊗y−−−→i q

′ and there
exists a fixed partial output tree s ∈ Syi◦Γ such that ρ can be extend to a successful run of
Aq on each input tree t ∈ T xΣ ∩ dom(T (Aq)) together with an output tree s · t′ ∈ T yΓ , that is,
an output tree whose first part is always s.

In this proof, we let τ⊥i,y resp. τxi,⊥ denote τεi,y resp. τxi,ε. Also, we extend this notion;
we define the relation τx,y ⊆ QA × {Acc} if x is a labeled path that ends in a leaf, such that
(q, Acc) ∈ τx,y if there is a partial run ρ on x⊗ y of Aq with A : q x⊗y−−−→ Acc and there exists
a fixed partial output tree s ∈ SyΓ as described above.

The following formula expresses the requirements stated above. Let QA = {q1, . . . , qn},
q1 = qA0 , and Γ = {g1, . . . , g`}, we then write

RPath(X,Y ) := Path(X) ∧ Y ⊆ X ∧ φpre(Y )∧

∃Yg1 . . . ∃Yg`
∃Y⊥∃Xq1 . . . ∃Xqn

(
φpart(Yg1 , . . . , Yg`

, Y⊥) ∧ φpart(X1, . . . , Xn)∧

∀y
(
Y (y)→ ¬Y⊥(y)

)
∧ ∃x∃y

(
P0(x) ∧ S(x, y) ∧X(x) ∧Xq1(y)

)
∧

∀x∀d∀y
[
S(x, d) ∧ S(d, y) ∧ Pdir(d) ∧X(x) ∧X(d) ∧X(y) ∧ ¬

(
P⊥(y) ∧ Y⊥(y)

)
→( ∨

(q,(f,g),q1,...,qj)∈∆A,
(q,qi)∈τfi,g

Xq(x) ∧ Pf (x) ∧ Yg(x) ∧ Pi(d) ∧Xqi(y)
)]
∧

∃x
[
X(x) ∧ ¬Pdir(x)→

( ∨
(q,(f,g))∈∆A

Xq(x) ∧ Pf (x) ∧ Yg(x)
)])

.

We need one more auxiliary formula. To obtain a finite state transducer that realizes a
path-recognizable function, we require that only finitely many different output trees are
needed. If only finitely many different output trees are needed, then the length of the output
sequences that are mapped to the relevant labeled paths is bounded, that is, the set of needed
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output sequences is finite. The next formula is satisfied by a finite set that describes prefixes
of labeled paths. If all needed output sequences stay inside the positions specified by the set,
then this implies that finitely many different output sequences suffice.

φpre,fin(X) := φpre(X)∧

∀X1

(
Path(X1)→ ∃x

[
X1(x) ∧X(x) ∧ ¬

(
∃y
[
S(x, y) ∧X1(y) ∧X(y)

])])
.

Now, we are ready to state the desired formula. The formula describes that there is a set of
deterministically readable labeled paths such that for each labeled path from this set that
describes a path through a finite input tree there is a matching output and additionally the
set of used matching outputs (along the relevant paths) is finite.

φunif := ∃X∃Y
(

PathSet(X) ∧ Y ⊆ X ∧ φpre,fin(Y )∧

∀X1
[
X1 ⊆ X ∧ Path(X1) ∧ ∃x

(
X1(x) ∧ P⊥(x)

)
→ ∃Y1

(
Y1 ⊆ Y ∧RPath(X1, Y1)

)])
.

Since the equivalence between MSO-definable tree languages and regular tree languages
is effective, we can construct an automaton Aφunif such that T (Aφunif ) is equivalent to
T (φunif) := {t ∈ T Inf

V | t |= φunif}.
Finally, we claim tG ∈ T (Aφunif ) if, and only if, R is uniformizable by a finite state trans-

ducer that realizes a path-recognizable function. If R is uniformized by a path-recognizable
function, then there exists an assignment of the variables such that tG |= φunif . From a
D↓PTT T that uniformizes R and realizes a path-recognizable function we can obtain a
valuation as follows. Recall that a position in tG can be either interpreted as a labeled path,
or as a path resp. a position in a tree if we disregard the labels. Concerning the valuation of
X, a position is included in the set X if it describes a (prefix of a) labeled path that the
uniformizer reads from the root to a leaf in an input tree in order to produce an output
tree. Generally, such a uniformizer specifies a set of finite labeled paths of arbitrary length.
However, since φunif , more specifically its subformula PathSet(X), requires X to describe
a set of infinite labeled paths, for each finite labeled path π that the uniformizer reads, X
also includes the positions that describe its infinite extension π(1⊥)ω. Then X describes the
desired set of infinite labeled paths. Concerning the valuation of Y , we have to consider the
output trees that T produces. These are only finitely many different trees, say t1, . . . , tk.
We choose Y as the subset of X such that a position from X is included in Y if there is
(at least) one ti such that this position describes a position that occurs in domti . Since the
set domt1 ∪ · · · ∪ domtk is finite, also Y is finite. Then tG |= φunif , because for each finite
labeled path π from the set X the set Y describes a prefix of this path such that there is an
output sequence o that can be mapped to this prefix (obtained from one of the tis) such that
A : qA0

π⊗o−−−→ Acc and furthermore (qA0 , Acc) ∈ τπ,o, that is, this partial run can be extended
to a successful run of A on each input tree t ∈ TπΣ . That indeed (qA0 , Acc) ∈ τπ,o holds can
be seen as follows. Let TπΣ ×{to} with to ∈ T oΓ be the relation that T realizes when π is read.
This subset of R can be recognized by a D↓TA C. Since A is guidable, there is a mapping g
such that (C, g) guides A. Hence, g(ρ) restricted to π ⊗ o is the same for each run ρ of C on
t⊗ to for some t ∈ TπΣ , because C is deterministic. Thus, (qA0 , Acc) ∈ τπ,o.

If tG ∈ T (Aφunif ), then there exists a valuation of the variables such that a regular
([21], see also [24]) deterministically readable set of labeled paths can be obtained that
captures every input tree. Since this set is regular, it is recognizable by a finite state
transducer. Additionally, the valuation of Y yields a global bound such that the size of
each output mapped to a relevant path through an input tree remains inside this bound.
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Consequently, only finitely many different output trees are needed. Hence, there exists a
finite state uniformizer that realizes a path-recognizable function, such a uniformizer can
e.g., be constructed in the following way. Clearly, a deterministic finite state top-down tree
transducer that reads the relevant path in an input tree can be obtained from a regular
set of labeled paths. Also, a global bound of the length of needed output sequences on the
relevant paths is known. Since there are only finitely many output sequences that remain
inside the bound, the transducer can gradually compute τπ,o for each such output sequence
o, where π is the read input sequence. Eventually, when a leaf is reached, for at least one o
holds that (qA0 , Acc) ∈ τπ,o. The transducer then produces an output tree matching to the
(chosen) accepting state transformation. J

We have seen that it is decidable whether a tree-automatic relation can be uniformized
by a path-recognizable function.

Now, we establish a connection between long output delay and path-recognizable functions.
Therefore, we first introduce profiles for labeled path segments w.r.t. a given relation
automaton. We define the profile of a labeled path segment xi to be the set that contains
all possible state transformations τxi,y induced by x together with some y of same or
smaller length. Formally, let x ∈ PathΣ and i ∈ dirΣ, we define the profile of xi to be
Pxi = (Pxi,=, Pxi,<, Pxi,ε) with

Pxi,= := {τxi,y | |y| = |x|}, Pxi,< := {τxi,y | y 6= ε and |y| < |x|}, and Pxi,ε := {τxi,y | y = ε}.

From Px1i1 and Px2i2 the profile Px1i1x2i2 is uniquely determined, i.e.,

Px1i1x2i2,= := {τ1 ◦ τ2 | τ1 ∈ Px1i1,=, τ2 ∈ Px2i2,=},
Px1i1x2i2,< := {τ1 ◦ τ2 | τ1 ∈ Px1i1,=, τ2 ∈ Px2i2,<} ∪ {τ1 ◦ τx2i2,ε | τ1 ∈ Px1i1,<}, and

Px1i1x2i2,ε := {τx1i1,ε ◦ τx2i2,ε}.

Thus, the concatenation of Px1i1 , Px2i2 is naturally defined by Px1i1 · Px2i2 = Px1i1x2i2 . A
segment xi ∈ (ΣdirΣ)∗dirΣ of a labeled path is called idempotent if Pxi = Pxixi.

As a consequence of Ramsey’s Theorem [22], we obtain the next lemma. Note that the
lemma refers to idempotent factors w.r.t. N↓TAs , however the proof is the same as in [18]
for idempotent factors w.r.t. D↓TAs.

I Lemma 14. There exists a bound K ∈ N such that each labeled path π ∈ PathΣ with
||π|| ≥ K contains an idempotent factor.

Proof. Ramsey’s Theorem yields that for any number of colors c and any number r, there
exists a number K ∈ N such that if the edges of a complete graph with at least K vertices
are colored with c colors, then the graph must contain a complete subgraph with r vertices
such that all edges have the same color, c.f. [8].

Let π ∈ PathΣ with the factorization π = f1j1 . . . jn−1fn, f1, . . . , fn ∈ Σ and j1, . . . , jn−1 ∈
dirΣ. Consider the complete graph G = (V,E, col) with edge-coloring col : E → Cols, where
V := {1, . . . , n}, E := V × V , Cols is the finite set of profiles and col(e) := Pfiji...fkjk

if
e = (i, k) for all e ∈ E. If there exist i, j, k ∈ N with i < j < k ≤ n such that the edges (i, k),
(i, j) and (j, k) have the same color, i.e., the respective profiles are the same, then π has a
factorization that contains an idempotent factor.

As a consequence of Ramsey’s Theorem, for r = 3 and c = |Cols|, if n ≥ K, then π must
contain an idempotent factor. J

We introduce some additional notation on how to split a tree in parts and how to repeat
a part of a tree that contains an idempotent factor. For a special tree s ∈ SΣ, we inductively
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define the special tree sn ∈ SΣ by sn := sn−1 · s and s0 := ◦ for n ∈ N. Let x, y ∈ PathΣ,
i, j ∈ dirΣ, and path(x)i = u, path(y)j = v. For a tree t ∈ T xiyΣ , we introduce shorthand
notations t[:u], t[u:uv], and t[uv:] to denote t[◦/u], t[◦/uv]|u, and t|uv, respectively. Note that
t = t[:u] · t[u:uv] · t[uv:]. Furthermore, let y 6= ε and yj be an idempotent factor, we fix tn(u,v)
to be the tree that results from repeating the idempotent factor n times. More formally, we
define

tn(u,v) := t[:u] · tn[u:uv] · t[uv:] for n ∈ N.

If it is clear from the context to which idempotent factor we refer, then we leave out the
subscript.

The following Lemma establishes the connection between long output delay and path-
recognizable functions. Basically, the lemma states that if there exists a uniformization by a
D↓PTT such that an idempotent path segment can be repeated any number of times and
the length of the output on the repetition is bounded, i.e., the output delay is unbounded,
then there also exists a uniformization by a path-recognizable function.

I Lemma 15. Given a tree-automatic relation R, x, y ∈ PathΣ, i, j ∈ dirΣ with path(x)i = u,
path(y)j = v, y 6= ε and yj idempotent. If Rxiy is uniformized by a D↓PTT T such that
||outT (t[:u] · tn[u:uv], uv

n)|| ≤ ||x|| for each n > 0 and for each t ∈ T xiyΣ , then Rxiy can be
uniformized by a path-recognizable function.

Proof. Recall the proof of Theorem 7, to show the statement of this lemma it suffices to
show that the MSO-sentence φunif constructed from a guidable ↓TA A for Rxiy is satisfied
by tG constructed from a D↓TA B for its domain. We state the sentence again:

φunif := ∃X∃Y
(

PathSet(X) ∧ Y ⊆ X ∧ φpre,fin(Y )∧

∀X1
[
X1 ⊆ X ∧ Path(X1) ∧ ∃x

(
X1(x) ∧ P⊥(x)

)
→ ∃Y1

(
Y1 ⊆ Y ∧RPath(X1, Y1)

)])
.

A suitable valuation for X, that is, a valuation describing a deterministically readable
regular set of labeled paths, can be obtained as follows. Since ||outT (t[:u] ·tn[u:uv], uv

n)|| ≤ ||x||
for each n > 0 and for each t ∈ T xiyΣ , there is a state s of T that is reached at the node
uvm1 and again at uvm2 for some m1 < m2 in a tree t ∈ T xiy

m2−1jy
Σ . As a consequence, Ts

can read only one labeled path in a tree, because T is a path-preserving uniformizer and
since the delay can be arbitrarily large when T is in s the path-preserving property is only
ensured if a single path is read. Let P denote the set of labeled paths read by Ts. Then the
valuation of X is chosen to describe {xiyj} · P · {(1⊥)ω}. We append (1⊥)ω to each path,
because formally the set X has to describe infinite paths.

We now show that for each finite labeled path π from the root to a leaf that is described
by X there exists a suitable output tree to such that for each t ∈ TπΣ holds (t, to) ∈ Rxiy.
The labeled path π is of the form xiyjz, let path(z) = w. For a t ∈ TπΣ let tn denote the
tree obtained from t, where the idempotent factor yj is repeated n times. Since the delay
can get arbitrary large when reading the idempotent factor, we can pick some k such that
||outT (tk, uvkw)|| < |uvk| and in a computation of T on tk the uniformizer is in state s at
the node uvk. Since T is a D↓PTT it follows that T xi(yj)

kz
Σ × T (tk) ⊆ Rxiy. This subset of

Rxiy is D↓TA-recognizable, say by a D↓TA C. Then C can guide A. Let g be a mapping such
that (C, g) guides A. Let ρ be the deterministic run of C on tk ⊗ T (tk), and let g(ρ) = ρ′ be
the run of A on tk ⊗ T (tk) which looks as follows:

A : q0
x⊗o1−−−→i q1

(yj)k−1y⊗o2−−−−−−−−→j q2
z⊗ε−−→ Acc
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with ||o2|| ≤ ||(yj)k−1y||. Note since C is deterministic, for each tree t′ from T
xi(yj)kz
Σ

the accepting guided run of A on t′ ⊗ T (tk) has the same form along xi(yj)kz. Hence,
(q0, q1) ∈ τxi,o1 , (q1, q2) ∈ τ(yj)k,o2 and (q2, Acc) ∈ τz,ε Also, since yj is idempotent, there is
some o3 ∈ PathΓ such that τ(yj)k,o2 = τyj,o3 with ||o3|| ≤ ||y||. Let to denote an output tree
corresponding to τxiyjz,o1io3 Consequently, a run of A on t⊗ to has the following form:

A : q0
x⊗o1−−−→i q1

y⊗o3−−−→j q2
z⊗ε−−→ Acc,

i.e., (t, to) ∈ Rxiy and the corresponding MSO-formula describing a successful run can be
satisfied. That is, the formula RPath(X1, Y1), where X1 ⊆ X corresponds to π = xiyjz and
Y1 ⊆ Y corresponds to o1io3.

We have seen that for each finite labeled path π from the root to a leaf that is described
by X there exists a suitable output tree to, furthermore the size of such a to is bounded by
the length of xiy, thus only finitely many different tos are needed. A suitable valuation of Y
has to be a finite set representing the needed output trees. As argued above, finitely many
tos suffice, and hence Y can be chosen as a finite set representing the needed tos. J

As we have seen, if a transducer that uniformizes a relation introduces long output delay,
then the relation can also be uniformized by a path-recognizable function.

We introduce a complexity measure for D↓PTTs w.r.t. the lookahead that the transducer
introduces. This will help us reason about the behavior of a uniformizer with minimal
complexity. The idea is to measure the complexity of a uniformizer by counting the introduced
lookahead. We do not consider lookahead-paths that could be part of a path-recognizable
function, because this is generally an infinite set of paths.

For a tree-automatic relation R ⊆ TΣ × TΓ, a D↓PTT T that uniformizes R, and a limit
l ∈ N, we define the lookahead-path-language LPLT (R, l) such that π ∈ PathΣ is included if
the following conditions hold:

There is a t ∈ TπΣ∩dom(R) with (t, qT0 , ϕ0)→T (t, t1, ϕ1)→T · · · →T (t, tn, ϕn) such that
there is ui ∈ Dti ∩ domπ with ui v ϕi(ui) v path(π) and |ui| < l and ϕn(un) = path(π)
and it occurs output delay w.r.t. ui in (t, ti, ϕi) for all i ∈ {1, . . . , n}, and
Rπ is not uniformizable by a path-recognizable function.

Note, LPLT (R, l) is a prefix-closed set. Furthermore, we define value(LPLT (R, l)) to be the
sum of all lengths of all labeled paths, i.e.,

∑
π∈LPLT (R,l) ||π||.

I Lemma 16. The set LPLT (R, l) is finite.

Proof. We prove this statement by contradiction. Assume LPLT (R, l) is infinite. Then
LPLT (R, l) contains labeled paths of arbitrary length. We pick some π ∈ LPLT (R, l) such
that ||π|| > l + l ·K|QT | with K from Lemma 14. Now, we prove that Rπ is uniformizable
by a path-recognizable function. This is a contradiction to π ∈ LPLT (R, l).

Pick any t ∈ TπΣ ∩dom(R) and let c0 = (t, qT0 , ϕ0). The configuration sequence witnessing
membership of π in LPLT (R, l) has length > l + l ·K|QT |. For each j ∈ {0, . . . , l − 1}, we
can thus pick a subsequence of configurations c1 = (t, t1, ϕ1), c2 = (t, t2, ϕ2), . . . , cK =
(t, tK , ϕK) with c0 →∗T c1 →∗T · · · →∗T cK such that there is s ∈ QT and ui ∈ Dti ∩ domπ

with valti(ui) = s for all i ∈ {1, . . . ,K} and furthermore l + j · K|QT | < |ϕ1(u1)| and
|ϕK(uK)| ≤ l + (j + 1) ·K|QT |.

Let πj denote the jth segment of length K|QT | of π starting after the first l letters of π.
Together with Lemma 14 it follows that each such segment contains an idempotent factor
yj2 such that π = xj1yj2z with path(x1)j1 = ϕm(um) and path(xj1y)j2 = ϕn(un) for some
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m < n ≤ K w.r.t. a suitable subsequence. There are at least l such segments in π, because
||π|| > l + l ·K|QT |.

Since π ∈ LPLT (R, l), there is at least one segment πj such that T does not produce output
while reading the idempotent factor in πj . Otherwise, T would produce at least l output
symbols while reading π, which is a contradiction to π ∈ LPLT (R, l). Consider a subsequence
that yields an idempotent factor yj2 such that π = xj1yj2z with path(x1)j1 = ϕm(um) and
path(xj1y)j2 = ϕn(un) for some m < n ≤ K such that T produces no output while reading
yj2. Let ϕm(um) = vm and ϕn(un) = vn. Then, since ||outT (t[:vm] · tk[vm:vn], path(π))|| < l for
all k ∈ N, Lemma 15 implies that Rπ can be uniformized by a path-recognizable function. J

From the above lemma it follows directly that value(LPLT (R, l)) ∈ N. This allows us to
compare uniformizers by comparing their values.

For the following proofs we need an auxiliary lemma that allows us to translate a
computation of a uniformizer step-by-step into a run of a non-deterministic specification
automaton by using only the part of the input tree that the uniformizer has read so far.
In particular this means if the uniformizer reads a lookahead-path, then we require that
the already constructed part of the run of the specification automaton depends only on the
lookahead. Recall that we use guidable automata for the specifications. The following lemma
states that a uniformizer can be turned into a guide for the specification automaton that has
the desired property.

I Lemma 17. Let R be a tree-automatic relation and let T be a D↓PTT that uniformizes R.
Then, there exists an infinite state N↓TA AT such that R(AT ) = R(T ) with the following
property:

Let t ∈ dom(R)∩ T xiyΣ , if xiy ∈ LPLT (R, ||x||) and T (t[◦/path(xiy)] · valt(path(xiy))) ∈
T oΓ∪QT with path(x) = path(o), then there exists a run of ρ of AT on t ⊗ T (t) such that
(ρ(ε), ρ(path(x)i)) ∈ τxi,o.

Proof. The relation R(T ) is generally not D↓TA-recognizable, thus we have to construct
an N↓TA that recognizes R(T ). However, from a run of T on a tree t ∈ dom(R), it will be
possible to deterministically construct an accepting run of AT on t⊗ T (t).

We now present the construction of AT = (QAT ,Σ⊥ × Γ⊥, qAT0 ,∆AT ) given T =
(QT ,Σ,Γ, qT0 ,∆T ). We define the set of states QAT as QA ∪ QD ∪ QT with qT0 as ini-
tial state, where

a) QA := {s · p | s ∈ SΓ, p ∈ QT } is the set of states indicating that output is ahead or one
the same level as the input, and

b) QD := {(π, s · p) | π ∈ PathΣ, s ∈ SΓ, p ∈ QT } ∪ {(π, t) | π ∈ PathΣ, t ∈ TΓ}, is the set of
states indicating that there is output delay, and

c) QT := {t | t ∈ TΓ} is the set of states that are used to recognize TΣ×{t} for each t ∈ QT .

Now we present the construction of ∆AT , for that we make an observation about the possible
configurations of T . Let (t, t′, ϕ) be a configuration of T such that there occurs delay
w.r.t. a node u, for example ϕ(u) = v, v @ u and vi v u, i.e., output is ahead. Assume
in the next computation step output is produced, in order to satisfy the restriction that
input and output have to be on the same path, the right-hand side of the applied rule
has to be of the form w[p(xi)], where w is a 1-context. Otherwise, for some output of
the form w′[. . . , p(xi), . . . , q(xj), . . . ], we would obtain a successor configuration (t, t′′, ϕ′)
with ϕ′(vj) = u′ and vj 6v u @ u′, i.e., input and output are no longer on the same
path. In case that there is output delay w.r.t. u, i.e., ϕ(u) = v, u @ v and ui v v, in a
computation the next rule that is applied which produces output has to be of the form
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g[t1, . . . , ti−1, w[. . . ], ti+1, . . . , tn] with t1, . . . , ti−1, ti+1, . . . , tn ∈ TΓ. Thereby, a successor
configuration (t, t′′, ϕ′) is reached with ϕ(u′) = v′ such that u @ ui v u′ and v @ v′, i.e.,
input and output are on the same path.

First, we describe how ∆AT is constructed w.r.t. a configuration of T such that input and
output position are the same (in d)), or the output position is ahead of the input position
(in e)). The part that is ahead is stored in the states.

d) For p ∈ QT and p(f(x1, . . . , xi))→ g(p1(x1), . . . , pi(xi), ti+1, . . . , tn) ∈ ∆T , we add

(p, (f, g), p1, . . . , pi, ti+1 . . . , tn) to ∆AT ,

for p ∈ QA and p(f(x1, . . . , xi))→ g(t1, . . . , tj−1, w[q(xj)], tj+1, . . . , tn) ∈ ∆T , we add

(p, (f, g), t1, . . . , tj−1, w[q], tj+1 . . . , tn) to ∆AT , and

e) for s · p ∈ QA and p(f(x1, . . . , xi)) → w′[q(xj)] ∈ ∆T such that s is of the form
g(t1, . . . , tj−1, w[. . . ], tj+1, . . . , tn), we add

(s · p, (f, g), t1, . . . , tj−1, w[w′[q]], tj+1 . . . , tn) to ∆AT .

Secondly, we describe how ∆AT is constructed w.r.t. a configuration of T such that input
and output position are the same and T delays the output (in f)), or the output is already
delayed (in g)) and T might delay further. The uniformizer T reads deterministically through
the input and at some point produces output, the corresponding transitions we construct
allow us to guess a possible lookahead-path (in f) resp. g)) and verify the correctness of the
guess (in h)). In the state space the lookahead-path as well as the output of the transition
that is applied by T is stored.

f) For p ∈ QT , and p(f(. . . )) → p1(xj), p1(f1(. . . )) → p2(xj1), . . . , pn−1(fn−1(. . . )) →
pn(xjn−1) ∈ ∆T , and pn(fn(. . . ))→ g(t1, . . . , tj−1, w[. . .], tj+1, . . . , tm) ∈ ∆T , we add

(p, (f, g), t1, . . . , tj−1, (π,w[. . .]), tj+1, . . . , tn) to ∆AT ,

where π = f1j1f2j2 . . . fn,
g) for (fiyjf1, p1) ∈ QD, p1(f1(. . . )) → p2(xj1), . . . , pn−1(fn−1(. . . )) → pn(xjn−1) ∈ ∆T ,

and pn(fn(. . . ))→ g(t1, . . . , tj−1, w[. . .], tj+1, . . . , tm) ∈ ∆T , we add

((fiy, p1), (f, g), t1, . . . , ti−1, (yz, w[. . .], ti+1, . . . , tn) to ∆AT ,

where z = f1j1f2j2 . . . fn.

Note that the constructions from f) and g) cause the non-determinism of AT . The guess
that was made in f) resp. g) is then verified, meaning the input symbol must match the first
symbol in the stored lookahead-path and the output symbol must match the root symbol of
the stored output.

h) For (fiy, w[. . . ]) ∈ QD such that w[. . . ] is of the form g(t1, . . . , tj−1, w
′[. . . ], tj+1, . . . , tn),

we add
((fiy, w[. . . ]), (f, g), t1, . . . , ti−1, (y, w′[. . . ]), ti+1 . . . , tn) to ∆AT .

It follows directly from the construction that T (AT ) recognizes R(T ). We still have to
show the statement of the lemma concerning the runs of AT . For every t ∈ dom(R), we can
show by induction on the height of a node v ∈ domt that there is a run of AT on t⊗ T (t)
with the following properties:
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1. If there exists no configuration c = (t, t′, ϕ) of T on t such that there is u ∈ Dt′ with
ϕ(u) = v, then ρ(v) = T (t)|v.

2. If there exists a configuration c = (t, t′, ϕ) of T on t such that there is u ∈ Dt′ with
ϕ(u) = v and v v u, then ρ(v) = T (t[◦/v])|v.

3. If there exists a configuration c = (t, t′, ϕ) of T on t such that there is u ∈ Dt′ with
ϕ(u) = v and u @ v, then ρ(v) = (y, T (t[◦/v′]·valt(v′))|v), where xiy ∈ PathΣ s.t. t ∈ T xiyΣ
with path(x)i = v, path(xiy) = v′ and ||T (t[◦/v′])||v < |v|, ||T (t[◦/v′] · valt(v′))||v ≥ |v|.
In words, when the input symbol at node v′ is read by T , then output is produced that
is mapped to v.

Recall the statement given in the lemma: Let t ∈ dom(R) ∩ T xiyΣ , if xiy ∈ LPLT (R, ||x||)
and T (t[◦/path(xiy)] · valt(path(xiy))) ∈ T oΓ∪QT with path(x) = path(o), then there exists a
run of ρ of AT on t⊗ T (t) such that (ρ(ε), ρ(path(x)i)) ∈ τxi,o.

From the above induction it follows that AT has a run ρ on t ⊗ T (t) such that for
each v v path(x)i with v 6= ε a state ρ(v) as described in 3. is reached. For v = ε the
run yields ρ(ε) = qT0 (item 2. applies). Note that the form of the states only depend on
T (t[◦/path(xiy)] · valt(path(xiy))). Furthermore, since xiy is a lookahead-path, we have
T (t[◦/path(xiy)] · valt(path(xiy))) = T (s[◦/path(xiy)] · vals(path(xiy))) for each s ∈ T xiyΣ .
Consequently, by construction of AT , there exists a run ρ′ on s⊗T (s) such that ρ(v) = ρ′(v)
for each v v path(x)i. Hence, there is partial run of the form AT : ρ(ε) x⊗o−−→i ρ(path(x)i)
such that this run can be extended to a successful run for each tree from dom(R)∩ T xiyΣ , i.e.,
(ρ(ε), ρ(path(x)i)) ∈ τxi,o. J

The next lemma basically states that for a uniformizer with minimal complexity it is
not necessary to further delay the output if the read lookahead-path already contains an
idempotent factor, unless the relation has to be uniformized by a path-recognizable function.

I Lemma 18. Let R be a tree-automatic relation, let x ∈ PathΣ, let l ≤ ||x|| and let
T be a D↓PTT with x ∈ LPLT (R, l) that uniformizes R such that value(LPLT (R, l)) ≤
value(LPLU (R, l)) for each D↓PTT U with x ∈ LPLU (R, l) that uniformizes R.

Let y, y1, y2 ∈ PathΣ, i, d, j ∈ dirΣ with y = y1dy2, y2j is idempotent, Py1d = Py2j. If
xiy ∈ LPLT (R, l), then xiyjπ /∈ LPLT (R, l) for each π ∈ PathΣ.

Proof. Proof by contradiction. Assume xiy ∈ LPLT (R, l) and there is xiyjπ ∈ LPLT (R, l)
for some π ∈ PathΣ. Towards a contradiction, first, we show that there is a uniformizer U
such that xiy1dy2 is never a prefix of a labeled path in LPLU (R, l), but xiy1 is a prefix of
some labeled paths in LPLU (R, l). Intuitively, this means, it is in fact not necessary for a
uniformizer to read the idempotent factor y2j. Consequently, the lookahead-paths can be
shortened. Secondly, we show that value(LPLU (R, l)) < value(LPLT (R, l)).

For the first part of the proof, we construct a uniformizer U based on T . Let path(xiy1) =
u, path(y2) = v and we fix ty2 to be a special tree from T y2j·◦

Σ . For a tree t ∈ T xiy1
Σ , we

denote by t′ the tree t[:ud] · ty2 · t[ud:] ∈ T xiy1dy2
Σ = T xiyΣ that is obtained from t by inserting

ty2 . The idea behind the construction of U is that for an input tree t /∈ T xiy1
Σ , U works like

T . Otherwise, for an input tree t ∈ T xiy1
Σ , the behavior of U is based on the computation of

T on t′.
For this, we have to verify whether a labeled path that has xiy1 as prefix is read. This can

be done by copying for the first ||xiy1|| computation steps the behavior of T and additionally
storing the so far read labeled path in the state space. If some (s1, z1d1) ∈ QT × PathΣdirΣ
at a σ1-labeled node with z1d1σ1 6v xiy1 is reached, then a labeled path that does not have
xiy1 as prefix is read and U switches to Ts1 . Otherwise, a state (s2, z2d2) ∈ QT × PathΣ at
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a σ2-labeled node with xiy1 = z2d2σ2 is reached, from then on U continues differently than
Ts2 .

Since by assumption xiyjπ ∈ LPLT (R, l), also its prefix xiy ∈ LPLT (R, l). Thus, in a
computation of T on t′ ∈ T xiyΣ , a configuration c = (t′, t′′, ϕ) is reached such that there is
α ∈ Dt′′ with α v ϕ(α) = path(xiy)j = udvj. Let valt′′(α) = s ∈ QT . Then U continues to
read at the dth child, that is, at the node ud ∈ domt and simulates the computation of Ts on
t′|udvj . This can be done because t′|udvj = t|ud by definition of t′. In the process, U reads
the labeled path through t|ud that Ts chooses to read in t′|udvj to produce output that is
mapped to xiy1dy2, i.e., output that is mapped to the path through udvj in t′.

Concerning the produced output, U behaves as follows. Assume U reads the node udw
in t, then in the simulation T reads the node udvjw in t′. Let udvjw = α. We distinguish
three cases. If ||outT (t′[:α] · valt′(α), udv)|| < ||x||, then U produces the same output as
T would have and continues to read. Otherwise, if ||x|| ≤ ||outT (t′[:α] · valt′(α), udv)|| <
||xiy1dy2||, then U does not produce output and just continues to read. Eventually, if
||outT (t′[:α] · valt′(α), udv)|| = ||xiy1dy2||, then U produces an output tree to compatible to a
labeled path o, where o is chosen as described below.

In order to choose output suitable for t, we consider the computation of T on t′. Let
T (t′) ∈ T o1io2do3

Γ with ||x|| = ||o1||, ||y1|| = ||o2|| and ||y2|| = ||o3||. From T we can construct
a (possibly infinite state) ↓TA AT as described in Lemma 17 that recognizes R(T ). By
construction, there is a run of AT on t′ ⊗ T (t′) such that (ρ(ε), ρ(udvj)) ∈ τxiy1dy2j,o1io2do3 .
Since A is guidable there exists a mapping g such that (AT , g) guides A. Hence, there exists
a partial run g(ρ) of A on xiy1dy2 ⊗ o1io2do3 of the form

A : qA0
x⊗o1−−−→i q1

y1⊗o2−−−−→d q2
y2⊗o3−−−−→j q3,

such that this partial run can be extended to a successful run of A on t′ ⊗ T (t′). In other
words, (qA0 , q1) ∈ τxi,o1 , (q1, q2) ∈ τy1d,o2 and (q2, q3) ∈ τy2j,o3 . Since y2j is idempotent and
Py1d = Py2j , we obtain Py1d = Py1dy2j . Thus we can pick an output o ∈ PathΓ such that
||o|| = ||y1|| and y1 ⊗ o induces the same state transformation as y1dy2 ⊗ o2do3 on A w.r.t.
direction d, and let to be the tree compatible to o.

After producing to, the transducer U switches to Tsk
at the kth child of udw in t, if sk is

the state that T would be in when T reads the node udvjwk in t′.
Now we show that t⊗U(t) ∈ R. From above it follows that there is a run of A on t⊗U(t)

of the form
A : qA0

x⊗o1−−−→i q1
y1⊗o−−−→d q3.

By construction of U we have T (t′)|udvj = U(t)|ud and also t′|udvj = t|ud. Since there is a
successful run ρ of A on t′⊗T (t′) with ρ(udvj) = q3 and since t′|udvj⊗T (t′)|udvj is accepted
by AT from q3, we obtain t⊗ U(t) ∈ R. Hence, U uniformizes R.

For the second part, we now show value(LPLU (R, l)) < value(LPLT (R, l)). We first
remark, that if z ∈ LPLU (R, l) with xiy1 6v z, then also z ∈ LPLT (R, l), because on paths
that do not have xiy1 as prefix, U works like T . Also, if z ∈ LPLU (R, l) with z v xiy1, then
z ∈ LPLT (R, l), because for the first ||xiy1|| computation steps, U works like T .

Otherwise, if z ∈ LPLU (R, l) with xiy1j v z, let z be of the form xiy1jz1 for some
z1 ∈ PathΣ and let path(z1) = w. We show xiy1dy2jz1 ∈ LPLT (R, l). Consider an input
tree t′ ∈ T xiy1dy2jz1

Σ that is obtained from a tree t ∈ T xiy1jz1
Σ by inserting ty2 . Then, from

the construction of U follows that T reads xiy1dy2jz1 in t′. Since xiy1dz1 ∈ LPLU (R, l),
we know ||outU (t[:udw], u)|| < l. Moreover, it follows from the construction of U that if
||outU (t[:udw], u)|| < l, then also ||outT (t′[:udvjw], u)|| < l, because l ≤ ||x|| and by con-
struction outT (t′[:udvjw], udv) = outU (t[:udw], u) as long as ||outT (t′[:udvjw], udv)|| ≤ ||x||. We
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can conclude that xiy1dy2jz1 ∈ LPLT (R, l) if Rxiy1dy2jz1 is not uniformizable by a path-
recognizable function. Since xiy1jz1 ∈ LPLU (R, l), we know Rxiy1jz1 is not uniformizable by
a path-recognizable function. Towards a contradiction, assume Rxiy1dy2jz1 is uniformizable
by a path-recognizable function. Then, from a uniformizer for Rxiy1dy2jz1 that realizes
a path-recognizable function, we can easily obtain a uniformizer for Rxiy1jz1 that real-
izes a path-recognizable function, because Py1dy2j = Py1d. This is a contradiction to
xiy1jz ∈ LPLU (R, l).

Altogether, for each labeled path z ∈ LPLU (R, l), there is either z ∈ LPLT (R, l) if
z 6v xiy1 or z v xiy1, or xiy1dy2jz1 ∈ LPLT (R, l) if z is of the form xiy1jz1 for some
z1 ∈ PathΣ. That means, value(LPLU (R, l)) ≤ value(LPLT (R, l)). However, by assumption
there is some π ∈ PathΣ such that xiyjπ ∈ LPLT (R, l) and by construction we obtain
xiy1jπ ∈ LPLU (R, l). Thus, value(LPLU (R, l)) < value(LPLT (R, l)). This is a contradiction
to T being a uniformizer for R with x ∈ LPLT (R, l) that has minimal complexity w.r.t.
l. J

Now, we are ready to show that deciding whether a tree-automatic relation R is D↓PTT-
uniformizable reduces to deciding the winner in the safety game GkA,B between In and Out
presented in Section 4.1 for a suitable k.

I Lemma 8. Given k, if Out has a winning strategy in GkA,B, then R is D↓PTT-uniformizable.

Proof. Assume that Out has a winning strategy in the safety game GA,B, then there is
also a positional one cf. [11]. We can represent a positional winning strategy by a function
σ : VOut → V . We construct a deterministic P↓TT T = (Q,Σ,Γ, qA0 ,∆) from such a positional
winning strategy σ as follows:

First, we describe how to translate moves of type o1. and type o3. to transition rules,
that is, moves of Out that lead to a vertex of In.

1. For each σ :
(
p, q, f

) r7→ {(p1, q1), . . . , (pi, qi)} with r = (q, (f, g), q1, . . . , qn) ∈ ∆A:

add q(f(x1, . . . , xi))→ g(q1(x1), . . . , qj(xj)) to ∆ if j ≤ i, or
add q(f(x1, . . . , xi))→ g(q1(x1), . . . , qi(xi), ti+1, . . . , tj) to ∆ if j > i

where f ∈ Σi, g ∈ Γj and ti+1, . . . , tj ∈ TΓ are chosen according to the r-edge constraints
in
(
p, q, f

)
.

2. For each σ :
(
p, q, πjf

)
7→
(
p, q, πjfj′

)
add

(
q, πj

)
(f(x1, . . . , xi)) →

(
q, πjfj′

)
(xj′) to ∆.

If the strategy σ defines a sequence of moves of Out of type o2., then this corresponds
to an output sequence that is produced without reading further input. Each output of
these moves can be represented by a special tree s as follows. A move of type o2. has
the form (p, q, fjπ) r→ (p′, q′, π) with r = (q, (f, g), q1, . . . , qn) and q′ = qj . Then, let
s = g(t1, . . . , tj−1, ◦, tj+1, . . . , tn) ∈ SΣ be the special tree, where each t` ∈ TΓ is chosen
according to the r-edge constraints in (p, q, fjπ) for ` 6= j, 1 ≤ ` ≤ n. Eventually, the strategy
defines a move of Out of type o1., o3., or o4., otherwise σ is not a winning strategy. These
parts of the strategy are transformed as follows:

3. For each σ :
(
p, q, πjf

) r17→ . . .
r`−17→

(
p′, q′, π′jf

)
7→
(
p′, q′, π′jfj′

)
add(

q, πj
)
(f(x1, . . . , xi))→ s1 · . . . · s`−1 ·

(
q′, π′jfj′

)
(xj′) to ∆,

where each si ∈ SΓ is a special tree corresponding to the ri-edge in the ith move.
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4. For each σ :
(
p, q, πjf

) r17→ . . .
r`−17→

(
p′, q′, f

) r`7→ {(p1, q1), . . . , (pi, qi)} add(
q, πj

)
(f(x1, . . . , xi))→ s1 · . . . · s`−1 · s to ∆,

where each si ∈ SΓ is a special tree corresponding to the ri-edge in the ith move and s is
an output corresponding to r` constructed as described in step 1.

Lastly, if such a (possibly empty) sequence ends with a move of Out of type o4., that is, a
move that indicate uniformizability by a path-recognizable function, then this is transformed
as follows:

5. For each σ :
(
p, q, πjf

) r17→ . . .
r`−17→

(
p′, q′, π′jf

)
7→ (p′, q′, π′jf) add(

q, πj
)
(f(x1, . . . , xi))→ s1 · . . . · s`−1 · qu(. . .) to ∆,

where each si ∈ SΓ is a special tree corresponding to the ri-edge in the ith move and
construct a D↓PTT U that uniformizes Rπ

′jf
q′ as described in the proof of Theorem 7 and

switch to U in s`−1, where qu(. . .) is the right-hand side of the transition that U takes
after reading π′jf .

We now verify that T defines a uniformization of R. Clearly, R(T ) ⊆ R because every
rule of T either corresponds to a rule of A or is a switch to a uniformizer that realizes a
path-recognizable function for some subset of R. We have to show dom(R(T )) = dom(R).
Let t ∈ dom(R). We can show by induction on the number of steps needed to reach a
configuration from the initial configuration (t, qA0 , ϕ0) that for each configuration c = (t, t′, ϕ)
such that Dt′ 6= ∅, in other words t′ /∈ TΓ, there exists a successor configuration c′. The
induction hypothesis states that in c, if u ∈ Dt′ with ϕ(u) = v, valt(v) = f ∈ Σ, valt′(u) =
(q, yj) ∈ QA × PathΣ · dirΣ, then the following conditions are satisfied:

t ∈ T xiyjfΣ for some x ∈ PathΣ and i ∈ dirΣ with path(x)i = u and path(xiy)j = v, and
in a play according to σ, the vertex (p, q, yjf) ∈ VOut is reached after a sequence of moves
corresponding to the labeled path xiyjf with p ∈ QB such that B : qB0

x−→i p.

Since σ is a winning strategy, σ defines the next move of Out from (p, q, yjf). Consequently,
there exists a corresponding transition with left-hand side (q, yj)(f(x1, . . . , xrk(f))) in ∆T
that is applicable at u in t′. This guarantees the existence of a successor configuration c′.

If valt(v) ∈ Σ0, i.e., if T reads a leaf, then by construction the transition that is applicable
at u in t′ is a rule from step 1., or step 4., where the right-hand side is a tree over Γ.

If the transition that is applicable at u in t′ is a rule from step 5., then T switches to a
uniformizer that realizes a path-recognizable function on the remainder of the input tree.
Hence, eventually a tree over Γ is produced.

From the above induction it follows that (t, qA0 , ϕ0)→∗T (t, T (t), ϕ) with DT (t) = ∅, i.e.,
T (t) ∈ TΓ, because in each computation step one input symbol is read and eventually, a leaf
is reached and the output is a tree over Γ. J

Now we show the other direction.

I Lemma 9. If R is D↓PTT-uniformizable, then Out has a winning strategy in GkA,B, where
k is a number effectively computable from A.

Proof. We choose k as K from Lemma 14. Assume that R is uniformizable by a D↓PTT.
We show by induction on the number of moves played by Out that the strategy in GA
can be chosen such that in every play according to the strategy the following induction
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hypothesis is satisfied. Let (p, q, π) denote a vertex of Out that is reached after a sequence
of moves in a play. W.l.o.g., we make the assumption that in this sequence until now no
vertex of Out was reached that has a self-loop. If a vertex with self-loop was reached, then
Out can stay in this vertex and wins. We claim that there is some l ≤ K such that π can
be split into xiyjf for some x, y ∈ PathΣ, i, j ∈ dirΣ and f ∈ Σ with ||x|| = l and there
exists a D↓PTT T that uniformizes Rxq such that the following holds: xiy ∈ LPLT (Rxq , l)
if ||xiy|| ≥ 1, and for every D↓PTT U that uniformizes Rxq with x ∈ LPLU (Rxq , l) holds
value(LPLT (Rxq , l)) ≤ value(LPLU (Rxq , l)).

In words, if in a play (p, q, π) ∈ VOut is reached, then there exists a factorization of π into
xiyjf such that there is a uniformizer T of Rxq with xiy as lookahead-path and T has minimal
complexity w.r.t. ||x|| compared to every uniformizer of Rxq that has x as lookahead-path.

Note, we allow to choose x or y resp. x and y as ε, then we identify xiyjf with yjf or
xif resp. f . First, we show that the induction hypothesis is true at the first reached vertex
of Out in a play. Such a vertex is of the form (qB0 , qA0 , f) ∈ VOut for some f ∈ Σ. For l = 0,
i.e., x = ε and y = ε, the induction hypothesis can be satisfied. Since R is uniformizable,
there exists a D↓PTT T with minimal complexity w.r.t. limit 0 that uniformizes Rεq0

= R.
Now we define the strategy. Assume the play is in a vertex (p, q, π) ∈ VOut and the

induction hypothesis is true for some l ≤ K and π can be split accordingly into xiyjf with
||x|| = l and let T by a uniformizer that satisfies the claim. To define the next move of
Out, we consider the computation of T on some t ∈ T xiyjfΣ and check whether the output
produced while reading xiyjf exceeds the limit l. Note, the induction hypothesis states that
xiy ∈ LPLT (Rxq , l), which means the output produced while reading xiy does not exceed the
limit l.

If ||T (t[◦/path(xiy)j] · f)||path(x) ≥ l, that is, T produces at least l output symbols
while reading xiyjf , then the strategy defines output moves. We pick an arbitrary z ∈
outT (t[◦/path(xiy)j] · f, path(x)), then Out makes l output moves according to the prefix of
length l of z as follows. Let o denote this prefix. Note that o is the greatest common prefix
of every labeled path from outT (t[◦/path(xiy)j] · f, path(x)). By Lemma 17 there exists an
infinite state N↓TA AT that recognizes R(T ), then there exists a run ρ of AT on t⊗ T (t)
such that (ρ(ε), ρ(path(x)i)) ∈ τxi,o. Since A is guidable, there is a mapping g such that
(AT , g) guides A. Note that it is not necessary to be able to compute g because it suffices to
show the existence of moves for Out. The existence of a winning strategy for Out implies that
there is also a positional one as used in Lemma 8. Thus, g(ρ) is a run of A on t⊗ T (t) such
that (q, q′) ∈ τxi,o, where q′ = g(ρ(path(xi))). Out takes the moves leading to the vertex
(p′, q′, yjf) ∈ VOut with A : q x⊗o−−→i q

′ and B : p x−→ p′. Since T is a uniformizer for Rxq that
reads xiyjf and (q, q′) ∈ τxi,o, there exists also a uniformizer for Ryjfq′ . Moreover, from the
induction hypothesis follows ||outT (t[◦/path(xiy)j], path(x))|| < l. This implies that there
exists a uniformizer for Ryjfq′ such that yif is a lookahead-path of this uniformizer w.r.t. limit
||yjf ||. Let T ′ denote such a uniformizer that has minimal complexity w.r.t. ||yjf || compared
to every uniformizer of Ryjfq′ that also has yif as lookahead-path. For (q′, yjf) ∈ VOut, the
induction hypothesis is then satisfied by choosing a new limit l = ||yjf || and T ′ as described.

Otherwise, if ||T (t[◦/path(xiy)j] · f)||path(x) < l, that is, T produces at less than l

output symbols while reading xiyjf , we distinguish two cases. For the first case assume
||π|| < 2K, then Out delays and picks direction d chosen as follows. Since xiy ∈ LPLT (Rxq , l)
and ||outT (t[◦/path(xiy)j] · f, path(x))|| < l, it follows that for every s ∈ T xiyjfΣ there is a
configuration c = (s, s′, ϕ) of T reachable such that there is u ∈ Ds′ with ϕ(u) = path(xiyjf)
and u v ϕ(u). Then, there exists a configuration c′ = (s, s′′, ϕ′) with c →T c′ such that
there is u′ ∈ Ds′′ with u v u′ v path(xiyjf) and ϕ′(u′) = path(xiyif)d for some direction d.
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Out moves to (q, xiyjfd). Then, the next reached vertex of Out is of the form (q, xiyjfdg)
for some g ∈ Σ. The induction hypothesis is satisfied for the same limit ||x|| and T as before:
Clearly, we obtain xiyjf ∈ LPLT (Rxq , l), because ||outT (t[◦/path(xiy)j] · f, path(x))|| < l.
Also, as before, T has minimal complexity w.r.t. ||x|| compared to every uniformizer that
also has x as lookahead-path.

For the second case assume ||π|| = 2K. Since l is at most K, ||y|| ≥ K. By Lemma 14
it follows that there is a factorization y1j1y2j2y3j3y4 of yjf such that y3j3 is idempotent
and Py2j2 = Py3j3 . By induction hypothesis, we are guaranteed that T is a uniformizer
for Rxq with minimal complexity w.r.t. l compared to every uniformizer that also has x as
lookahead-path. Together with Lemma 18, this implies that xiyjf /∈ LPLT (Rxq , l). However,
since T uniformizes Rxq and reads xiyjf this means that Rxiyjfq is uniformizable by a path-
recognizable function. Consequently, the vertex (p, q, π) ∈ VOut has a self-loop and Out stays
in this vertex from then on.

The strategy is winning because it ensures that Out can always make a move. J

As a consequence of Lemmata 8 and 9 and the fact that a winning strategy for Out in
GkA,B can effectively be computed, together with the fact that for each tree-automatic relation
a guidable N↓TA A can effectively be constructed, see [17], we immediately obtain Theorem
5.

C Details for Section 4.2

I Lemma 12. There exists a parity tree automaton C that accepts exactly those trees H_σ
such that (t, σ(t)) ∈ R for all t ∈ dom(R).

Proof. We show that there exists a parity tree automaton that accepts exactly those trees
H_σ for which σ is a strategy such that there exists an input tree t ∈ dom(R) and it
holds (t, σ(t)) /∈ R. Then, by closure properties of regular tree languages, we can obtain
a parity tree automaton that accepts exactly those trees H_σ such that (t, σ(t)) ∈ R for
all t ∈ dom(R). That is, H_σ is accepted if, and only if, σ corresponds to a synchronous
uniformizer.

A parity tree automaton, say C̄, that accepts exactly those trees H_σ for which there
is t ∈ dom(R) such that (t, σ(t)) /∈ R, i.e., (t, σ(t)) /∈ Ri for all i, is constructed as follows.
Recall that dom(R) is the union of pairwise disjoint domains. This means, in order to show
that σ does not correspond to a uniformizer, it is sufficient to show for some i that there is
t ∈ dom(Ri) such that (t, σ(t)) /∈ Ri. Hence, C̄ first guesses an i for which there is a tree
t ∈ dom(Ri) such that Ai does not accept t⊗ σ(t). Since Ai is deterministic, we can prove
the existence of such a tree by guessing a path where the deterministic run of Ai on the
combined input and output specified by σ fails.

However, since σ may be chosen such that the paths of input and output sequence diverge,
to show that the run fails, C̄ operates as follows. The parity tree automaton wants to simulate
the run of Ai on the output choices defined by σ that lead to a position where the run fails.
Note that although σ fixes the output choices, more than one output sequence might be
associated with the same input sequence. Thus, C̄ has to guess the input sequence that leads
to the output choices fixed by σ causing a non-accepting run, and also, it has to pick the
output sequence among the associated output sequences that will be used to simulate a run
of Ai. For this purpose, C̄ guesses an input sequence and follows the vertices that correspond
to choosing this labeled path in H_σ. As long as the path of the guessed input sequence is
the same path as the output sequence under consideration, C̄ simulates the run of Ai on the
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combined input and output on that path. The idea is explained a bit more formally below.
Let x resp. y denote the input resp. output sequence up to last position where both share
the same path, let path(x) = path(y) = u. Thus, C̄ is in a vertex in H_σ that corresponds
to the input sequence x and output sequence y and has simulated the run of Ai on x⊗ y.
Now, we describe how we proceed if input and output diverge, i.e., C̄ continues the input
sequence in direction i and the associated output sequence under consideration is continued
in direction j with i 6= j. Let x′ resp. y′ denote the continuation of the input resp. output
sequence. Furthermore, let path(x′) = iv and path(y′) = jv′. Then, in addition to following
x′ in H_σ, C̄ chooses the input labels along ujv′ beginning from uj. Let x′′ denote the
resulting labeled path with path(x′′) = jv′. The labels have to be chosen such that both
xx′ and xx′′ can be part of a tree from dom(Ri). Let Ai : qAi

0
x⊗y−−−→j q, that is, q is the

result of the simulation of the run of Ai so far. In the process of following x′ in H_σ, C̄
simulates the run of Ai on x′′ ⊗ y′ starting from q. Then, C̄ accepts if the run fails, i.e.,
Ai : qAi

0
x⊗y−−−→j q

x′′⊗y′−−−−→ QAi
\FAi

. This means, there exists some t ∈ dom(Ri)∩T xx
′

Σ ∩T xx′′Σ
such that (t, σ(t)) /∈ Ri, and consequently, (t, σ(t)) /∈ R.

It follows that C̄ accepts exactly those trees H_σ for which there is t ∈ dom(R) such
that (t, σ(t)) /∈ R. A formal construction of C̄ is omitted. The desired parity tree automaton
C can then be obtained from C̄ using complementation and intersection. J

I Lemma 13. The tree language T (C) is non-empty if, and only if, R has a uniformization
by a synchronous deterministic top-down tree transducer.

Proof. If the tree language T (C) is non-empty, then there exists at least one regular tree
H_σ that is accepted by C. From such an H_σ we can construct a synchronous D↓TT that
uniformizes R as follows. Given a vertex from H_σ of the form (p,Q) with L ∈ Q, then (p, L)
is used as a state of the uniformizer. The transition rules have to be constructed such that
they correspond to the output choices specified by σ. This is, if ((p, {L1, . . . , Lm}), f) o1,...,om→
[(p1, Q1), . . . , (pi, Qi)] is selected by σ in H_σ, then for each 1 ≤ j ≤ m we add the
rule (p, Lj)(f(x1, . . . , xi)) → g((pj1 , V1)(xj1), . . . , (pjr , Vr)(xjr )) to the transitions, where
oj = g(xj1 , . . . , xjr

) and V1, . . . , Vr as described in the construction of G in Section 4.2.
Conversely, assume that R has a uniformization by a synchronous D↓TT T . We have

to show that T (C) is non-empty. Therefore, it is sufficient to define σ inductively in
correspondence to T , which is done as follows. A node ((p, {L1, . . . , Lm}), f) inH corresponds
to exactly one input sequence xi1f ∈ PathΣ such that D : p0

x−→i1 p. Furthermore, each
vector Lj ∈ {L1, . . . , Lm} represents a set of output sequences from PathΓ · dirΓ computable
from the output choices. This is a set because different output choices made along this input
sequence eventually induce the same vector. Note that if a vector consists of single states,
then this vector corresponds to exactly one output sequence that is on the same path as the
input sequence. If a vector consists of state sets, then it can be the case that the vector
represents more than one output sequence.

For a node ((p, {L1, . . . , Lm}), f) reachable in H (w.r.t. the already defined part of σ),
we can show by induction on the length of the corresponding xi1f that the following holds
for 1 ≤ j ≤ m:

1. There is some yi2 ∈ PathΓ · dirΓ represented by Lj such that T (t) ∈ T yΓ and there exists
a configuration c = (t, t′, ϕ) of T such that u ∈ Dt′ with ϕ(u) = v, where path(x)i1 = v

and path(y)i2 = u, for all t ∈ T xi1fΣ ∩ dom(R), and
2. if some zi3 ∈ PathΓ · dirΓ is represented by Lj and if there is t̃ ∈ T xi1fΣ ∩ dom(R`) ∩ T x

′

Σ

such that path(x′) = path(z) with A` : qA`
0

x′⊗z−−−→i3 q, then q ∈ λ`(Lj) and there is
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t̂ ∈ T xi1fΣ ∩ dom(R`) ∩ T x
′′

Σ such that path(x′′) = path(y) with A` : qA`
0

x′′⊗y−−−→i2 q.

The first property states that one represented output sequence y is a output sequence
produced by T while reading x. The second property states that for all other represented
output sequences z, a state transformation induced by z together with some valid input can
also be induced by y and some valid input.

We define the strategy σ. Consider a configuration c = (t, t′, ϕ) as in 1., let valt′(u) =
s ∈ QT , then there exists a rule s(f(x1, . . . , xi))→ g(s1(xj1), . . . , sr(xjr )) ∈ ∆T , because T
is a uniformizer and t ∈ dom(R). We pick oj = g(xj1 , . . . , xjr

) as output choice for Lj . Then
σ selects the child that is reached via o1, . . . , om.

Recall the definition of C̄ from the proof of Lemma 12, C̄ accepts exactly those trees H_σ
for which there is t ∈ dom(R) such that (t, σ(t)) /∈ R. We show that C̄ rejects H_σ, then
it follows that C accepts H_σ. Pick a t ∈ dom(R), wlog, let t ∈ dom(R`). The automaton
C̄ accepts if there exists a path in the computation of A` on t ⊗ σ(t) where the run fails.
However, from the above induction using property 2. follows that the run is defined on every
path, i.e., C̄ rejects. J
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