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Abstract

We consider the synthesis of deterministic tree transducers from au-
tomaton definable specifications, given as binary relations, over finite
trees. We consider the case of tree automatic specifications, meaning
the specification is recognizable by a top-down tree automaton that reads
the two given trees synchronously in parallel. In this setting we study
tree transducers that are allowed to have either delay that remains in a
given bound or arbitrary delay. Delay is caused whenever the transducer
reads a symbol from the input tree but does not produce output. For
specifications that are deterministic top-down tree automatic, we provide
decision procedures for both bounded and arbitrary delay that yield de-
terministic top-down tree transducers which realize the specification for
valid input trees, that is, realize the specification for trees that are part
of the specification domain, and can behave arbitrarily on trees outside
the domain. Similar to the case of relations over words, we use two-player
games as the main technique to obtain our results.

1 Introduction
The synthesis problem asks, given a specification that relates possible inputs to
allowed outputs, whether there is a program realizing the specification, and if so,
construct one. This problem setting originates from Church’s synthesis problem
[1] which was already posed 1957 in [2]. Church considers the case where the
input is an infinite bit sequence that has to be transformed, bit by bit, into an
infinite bit sequence. The synthesis problem is then to decide whether there
is a circuit which realizes the given input/output specification, and construct
one if possible. A different terminology for the same problem uses the notion of
uniformization of a (binary) relation, which is a function that selects for each
element of the domain of the relation an element in its image. The synthesis
problem asks for effective uniformization by functions that can be implemented
in a specific way.
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Specifications are usually written in some logical formalism, while the uni-
formization, in particular in the synthesis setting, is required to be implemented
by some kind of device. Since many logics can be translated into automata,
which can also serve as implementations of a uniformization, it is natural to
study uniformization problems in automata theory. Relations (or specifications)
can be defined using automata with two input tapes, and uniformizations can
be realized by transducers, that is, automata with output.

A first uniformization result in such a setting has been obtained by Büchi
and Landweber in [3], who showed that for specifications over infinite words in
monadic second-order logic, it is decidable whether they have a uniformization
by a synchronous transducer (that outputs one symbol for each input letter).
The specifications considered in [3] can be translated into finite automata that
read the two input words synchronously. Relations that can be defined by
synchronous automata are referred to as automatic relations over finite words,
and as ω-automatic relations over infinite words.

The result of Büchi and Landweber has been extended to transducers with
delay, that is, transducers that have the possibility to produce empty output in
some transitions. Delay in the transducers can, e.g., be useful if parts of the
input have to be deleted. For a bounded delay, decidability was shown in [4],
and for an unbounded delay in [5]. In the case of finite words, it was shown in
[6] that it is decidable whether an automatic relation has a uniformization by
a deterministic subsequential transducer, that is, a transducer that can output
finite words on each transition.

Our aim is to study these uniformization questions for relations over trees.
Tree automata are used in many fields, for example as a tool for analyzing and
manipulating rewrite systems or XML Schema languages (see [7]). Tree trans-
formations that are realized by finite tree transducers thus become interesting
in the setting of translations from one document scheme into another [8]. There
are already some uniformization results for tree relations. For example, in [9] it
is shown that each relation that can be defined by a nondeterministic top-down
tree transducer, has a uniformization by a deterministic top-down tree trans-
ducer with regular lookahead (in which transitions can test regular properties
of the current subtree). However, these results focus on the existence of a uni-
formization for each relation that can be expressed by the considered model for
the specifications. In contrast to that, we are interested in the corresponding
decision problem. More precisely, for a class C of tree relations and a class F
of functions over trees, we are interested in a procedure that decides whether a
given relation from C has a uniformization in F . Note that this decision problem
only makes sense if not every relation in C has a uniformization in F .

In this paper, we start the investigation of such questions in the rich land-
scape of tree automaton and tree transducer models. We study uniformization
of automatic tree relations over finite trees (corresponding to the class C) by
deterministic top-down tree transducers (corresponding to the class F). For au-
tomatic tree relations that can be defined by deterministic top-down automata
(that is, an automaton deterministically reads the two input trees synchronously
in top-down fashion), we show that it is decidable whether a given relation has
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a uniformization by a top-down tree transducer, and if possible construct one.
For this result, we require that the transducer for the uniformization works cor-
rectly on all input trees that are in the domain of the specification. For trees
outside the domain, the transducer can produce an arbitrary output. Since the
transducer does not have to validate that the input is in the domain of the spec-
ification, we refer to this setting as uniformization without input validation. We
also briefly comment on the problems in the case of uniformization with input
validation, and solve the problem for the restricted class of uniformizers with-
out delay (synchronously producing one output symbol for each input symbol).
These decidability results are obtained by constructing strategies in two-player
games of infinite duration.

The paper is structured as follows. First, we fix some basic definitions and
terminology. Then, in Section 3.1 and Section 3.2, we consider uniformization
of deterministic top-down automatic tree relations by top-down tree transduc-
ers without input validation that have bounded delay and unbounded delay,
respectively. In Section 3.3, we briefly consider the case of uniformization with
input validation.

A preliminary version of this work has appeared in [10].

2 Preliminaries
The set of natural numbers containing zero is denoted by N. For a set S, the
powerset of S is denoted by 2S . An alphabet Σ is a finite non-empty set of letters.
A finite word is a finite sequence of letters. The set of all finite words over Σ is
denoted by Σ∗. The length of a word w ∈ Σ∗ is denoted by |w|, the empty word
is denoted by ε. For w = a1 . . . an ∈ Σ∗ for some n ∈ N and a1, . . . , an ∈ Σ, let
w[i] denote the ith letter of w, i.e., w[i] = ai. Furthermore, let w[i, j] denote
the infix from the ith to the jth letter of w, i.e., w[i, j] = ai . . . aj . We write
u v w if there is some v such that w = uv for u, v ∈ Σ∗. A subset L ⊆ Σ∗ is
called language over Σ.

A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a finite set
of ranks rk(f) ⊆ N (one could also work with a single rank for each symbol but
we adhere to the standard of assigning a set of ranks to each symbol). The set
of letters of rank i is denoted by Σi. A tree domain dom is a non-empty finite
subset of (N \ {0})∗ such that dom is prefix-closed and for each u ∈ (N \ {0})∗
and i ∈ N \ {0} if ui ∈ dom , then uj ∈ dom for all 1 ≤ j < i. We speak of ui
as successor of u for each u ∈ dom and i ∈ N \ {0}.

A (finite Σ-labeled) tree is a pair t = (domt, val t) with a mapping val t :
domt → Σ such that for each node u ∈ domt the number of successors of u is a
rank of val t(u). The height h of a tree t is the length of its longest path, i.e.,
h(t) = max{|u| | u ∈ domt}. The set of all Σ-labeled trees is denoted by TΣ. A
subset T ⊆ TΣ is called tree language over Σ.

A subtree t|u of a tree t at node u is defined by domt|u = {v ∈ N∗ |
uv ∈ domt} and val t|u(v) = val t(uv) for all v ∈ domt|u . In order to formalize
concatenation of trees, we introduce the notion of special trees. A special tree
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over Σ is a tree over Σ∪· {◦} such that ◦ occurs exactly once at a leaf. Given
t ∈ TΣ and u ∈ domt, we write t[◦/u] for the special tree that is obtained by
deleting the subtree at u and replacing it by ◦. Let SΣ be the set of special
trees over Σ. For t ∈ SΣ and s ∈ TΣ or s ∈ SΣ let the concatenation t · s be the
tree that is obtained from t by replacing ◦ with s.

For some of the proofs, it is convenient to concatenate a special tree with a
single letter, instead of a tree. For t ∈ SΣ and f ∈ Σi, i ≥ 0, let t · f denote the
result of replacing ◦ with f in t. Formally, if i > 0, then the result is not a tree
over Σ, but we treat it as such.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet.
We denote by TΣ(Xn) the set of all trees over Σ which additionally can have
variables from Xn at their leaves. We define X0 to be the empty set, the set
TΣ(∅) is equal to TΣ. Let X =

⋃
n>0Xn. A tree from TΣ(X) is called linear if

each variable occurs at most once. For t ∈ TΣ(Xn) let t[x1 ← t1, . . . , xn ← tn]
be the tree that is obtained by substituting each occurrence of xi ∈ Xn by
ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once and
in the order x1, . . . , xn when reading the leaf nodes from left to right, is called
n-context over Σ. Given an n-context, the node labeled by xi is referred to as ith
hole for every 1 ≤ i ≤ n. A special tree can be seen as a 1-context, a tree without
variables can be seen a 0-context. If C is an n-context and t1, . . . , tn ∈ TΣ(X)
we write C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

Tree automata. Tree automata can be viewed as a straightforward general-
ization of finite automata on finite words, when words are interpreted as trees
over unary symbols. For a detailed introduction to tree automata see e.g. [11]
or [7].

Let Σ =
⋃m
i=0 Σi be a ranked alphabet. A non-deterministic top-down tree

automaton (an N↓TA) over Σ is of the form A = (Q,Σ, Q0,∆) consisting of a
finite set of states Q, a set Q0 ⊆ Q of initial states, and ∆ ⊆

⋃m
i=0(Q×Σi×Qi)

is the transition relation. For i = 0, we identify Q× Σi ×Qi with Q× Σ0.
Let t be a tree andA be an N↓TA, a run ofA on t is a mapping ρ : domt → Q

compatible with ∆, i.e., ρ(ε) ∈ Q0 and for each node u ∈ domt with i ≥ 0
successors (ρ(u), val t(u), ρ(u1), . . . , ρ(ui)) ∈ ∆. A tree t ∈ TΣ is accepted if,
and only if, there is a run of A on t. The tree language recognized by A is
T (A) = {t ∈ TΣ | A accepts t}.

A tree language T ⊆ TΣ is called regular if T is recognizable by a non-
deterministic top-down tree automaton. Just as the class of regular word lan-
guages is closed under Boolean operations, so too is the class of regular tree
languages.

A top-down tree automaton A = (Q,Σ, Q0,∆) is deterministic (a D↓TA)
if the set Q0 is a singleton set and for each f ∈ Σi and each q ∈ Q there is
at most one transition (q, f, q1, . . . , qi) ∈ ∆. However, non-deterministic and
deterministic top-down automata are not equally expressive.

An extension to regular tree languages are (binary) tree-automatic relations.
A way for a tree automaton to read a tuple of finite trees is to use a ranked
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vector alphabet. Thereby, all trees are read in parallel, processing one node
from each tree in a computation step. Hence, the trees are required to have
the same domain. Therefore we use a padding symbol to extend the trees if
necessary. Formally, this is done in the following way.

Let Σ, Γ be ranked alphabets and let Σ⊥ = Σ∪· {⊥}, Γ⊥ = Γ∪· {⊥}, where ⊥
is a new symbol with rank 0. For an i-ary symbol f ∈ Σ⊥ and a j-ary symbol
g ∈ Γ⊥, let rk((f, g)) = max{i, j}. The convolution of (t1, t2) with t1 ∈ TΣ, t2 ∈
TΓ is the Σ⊥×Γ⊥-labeled tree t = t1⊗t2 defined by domt = domt1∪domt2 , and
val t(u) = (val⊥t1(u), val⊥t2(u)) for all u ∈ domt, where val⊥ti(u) = val ti(u) if u ∈
domti and val⊥ti(u) = ⊥ otherwise for i ∈ {1, 2}. As a special case, given t ∈ TΣ,
we define t⊗⊥ to be the tree with domt⊗⊥ = domt and val t⊗⊥(u) = (val t(u),⊥)
for all u ∈ domt. Analogously, we define ⊥⊗ t. We define the convolution of a
tree relation R ⊆ TΣ × TΓ to be the tree language TR := {t1 ⊗ t2 | (t1, t2) ∈ R}.

We call a (binary) relation R tree-automatic if there exists a regular tree
language T such that T = TR. For ease of presentation, we say a tree automaton
A recognizes R if it recognizes the convolution TR and denote by R(A) the
induced relation R.

A uniformization of a relation R ⊆ X × Y is a function fR : X → Y
such that for each domain element x the pair (x, fR(x)) is in the relation, i.e.,
(x, fR(x)) ∈ R for all x ∈ dom(R). In the following, we are interested whether
for a given tree-automatic relation there exists a uniformization which can be
realized by a tree transducer.

Tree Transducers. Tree transducers are a generalization of word transducers.
As top-down tree automata, a top-down tree transducer reads the tree from
the root to the leaves, but can additionally in each computation step produce
finite output trees which are attached to the already produced output. For an
introduction to tree transducers the reader is referred to [7].

A top-down tree transducer (a ↓TT) is of the form T = (Q,Σ,Γ, q0,∆)
consisting of a finite set of states Q, a finite input alphabet Σ, a finite output
alphabet Γ, an initial state q0 ∈ Q, and ∆ is a finite set of transition rules of
the form

q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)],

where f ∈ Σi, w is an n-context over Γ, q, q1, . . . , qn ∈ Q and variables xj1 , . . . , xjn ∈
Xi, or

q(x1)→ w[q1(x1), . . . , qn(x1)] (ε-transition),

where f ∈ Σi, w is an n-context over Γ, and q, q1, . . . , qn ∈ Q. A top-down tree
transducer is deterministic (a D↓TT) if it contains no ε-transitions and there
are no two rules with the same left-hand side. A top-down tree transducer is
linear if all the trees in the transitions are linear.

A configuration of a top-down tree transducer is a triple c = (t, t′, ϕ) of an
input tree t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a function ϕ : Dt′ → domt,
where
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• val t′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors

• val t′(u) ∈ Γ0 or val t′(u) ∈ Q for each leaf u ∈ domt′

• Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | val t′(u) ∈ Q}
(ϕ maps every node from the output tree t′ that has a state-label to a

node of the input tree t)

Let c1 = (t, t1, ϕ1) and c2 = (t, t2, ϕ2) be configurations of a top-down tree
transducer over the same input tree. We define a successor relation →T on
configurations as usual by applying one rule. Figure 1 illustrates a configuration
sequence explained in Example 1 below. Formally, for the application of a non-
ε-rule, this looks as follows:

c1 →T c2 :⇔ There is a state-labeled node u ∈ Dt′ of the
output tree t1 that is mapped to a node v ∈
domt of the input tree t, i.e., ϕ1(u) = v,
and there is a rule val t1(u) (val t(v)(x1, . . . , xi)) →
w[q1(xj1), . . . , qn(xjn)] ∈ ∆ such that the output tree
is correctly updated, i.e., t2 = t1[◦/u] · w[q1, . . . , qn],
and the mapping of state-labeled output nodes to input
nodes is also correctly updated, i.e., ϕ2(u′) = ϕ1(u′) if
u′ ∈ Dt1 \ {u} and ϕ2(u′) = v.ji if u′ = u.ui with ui is
the ith hole in w.

Furthermore, let →∗T be the reflexive and transitive closure of →T and →n
T the

reachability relation for →T in n steps. From here on, let ϕ0 always denote the
mapping ϕ0(ε) = ε. A configuration (t, q0, ϕ0) is called initial configuration of
T on t. A configuration c = (t, t′, ϕ) is said to be reachable in a computation of
T on t, if c0 →∗T c, where c0 is the initial configuration of T on t. The relation
R(T ) induced by a top-down tree transducer T is

R(T ) = {(t, t′) ∈ TΣ × TΓ | (t, q0, ϕ0)→∗T (t, t′, ϕ)}.

For a (special) tree t ∈ TΣ or t ∈ SΣ let T (t) ⊆ TΓ∪Q be the set of final trans-
formed outputs of a computation of T on t, that is the set {t′ | (t, q0, ϕ0) →∗T
(t, t′, ϕ) s.t. there is no successor configuration of (t, t′, ϕ)}. Note, we explicitly
do not require that the final transformed output is a tree over Γ. In the special
case that T (t) is a singleton set {t′}, we also write T (t) = t′. The class of
relations definable by ↓TTs is called the class of top-down tree transformations.

Example 1 Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h}, and
Σ0 = {a}. Consider the ↓TT T given by ({q},Σ,Σ, {q},∆) with ∆ = { q(a)→ a,
q(g(x1)) → q(x1), q(h(x1)) → h(q(x1)), q(f(x1, x2)) → f(q(x1), q(x2)) }. For
each t ∈ TΣ the transducer deletes all occurrences of g in t.

Consider t := f(g(h(a)), a). A possible sequence of configurations of T on
t is c0 →5

T c5 such that c0 := (t, q, ϕ0) with ϕ0(ε) = ε, c1 := (t, f(q, q), ϕ1)
with ϕ1(1) = 1, ϕ1(2) = 2, c2 := (t, f(q, q), ϕ2) with ϕ2(1) = 11, ϕ2(2) = 2,
c3 := (t, f(q, a), ϕ3) with ϕ3(1) = 11, c4 := (t, f(h(q), a), ϕ4) with ϕ4(11) = 111,
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Figure 1: The configuration sequence c0 to c5 of T on t from Example 1.

and c5 := (t, f(h(a), a), ϕ5). A visualization of this sequence is shown in Figure
1. /

In Sections 3, we consider restricted types of top-down tree transducers,
namely transducers with bounded (output) delay. Intuitively, delay occurs in
a computation of a transducer if there is a difference between the number of
produced output symbols and read input symbols. If the output is behind this
is called output delay. More formally, a configuration (t, t′, ϕ) has delay d w.r.t.
a node u ∈ Dt′ if the absolute value of |ϕ(u)|− |u| equals d. We speak of output
delay if |ϕ(u)| − |u| is a positive integer. The maximum delay that of (t, t′, ϕ) is
defined as max{d | ∃u ∈ Dt′ and abs(|ϕ(u)|−|u|) = d}. We say the delay (resp.
output delay) in a ↓TT T is bounded by k if for every reachable configuration
c of T the maximum delay (resp. output delay) of c is at most k. We speak of
↓TTs without delay, if the delay is bounded by 0.

Example 2 Consider T from Example 1 and the configuration sequence of T
given in Example 1. In c2 occurs output delay 1 resp. 0 w.r.t. node 1 resp. 2
of the output tree. It is easy to see that the transducer has unbounded output
delay, because it deletes all occurrences of g in an input tree. /

Games. A safety game G = (V, V0, V1, E, S) is played by two players, Player 0
and Player 1, on a directed game graph G = (V,E), where

• V = V0 ∪· V1 is a partition of the vertices into positions V0 belonging to
Player 0 and positions V1 belonging to Player 1,

• E ⊆ V × V is the set of allowed moves, and

• S ⊆ V is a set of safe vertices.

Let T ⊆ V denote the set of all terminal vertices, i.e., vertices without outgoing
edges. A play is a finite or infinite sequence v0v1v2 . . . of vertices compatible to
the edges of the game graph starting from an initial vertex v0 ∈ V . A play is
maximal if it is either infinite or it ends in a terminal vertex. Player 0 wins a
play if it stays inside the safe region, i.e., vi ∈ S for all i.

Let i ∈ {0, 1}, a strategy for Player i is a function σi : V ∗(Vi \ T )→ V such
that σi(v0 . . . vn) = vn+1 implies that (vn, vn+1) ∈ E. A strategy σi is a winning
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strategy from a vertex v0 ∈ V for Player i if the player wins every play starting
in v0, no matter how the opponent plays, if Player i plays according σi.

Safety games are positionally determined, cf. [12], i.e., for each vertex v ∈ V
one of the players has a winning strategy from v. Furthermore, the player
always has a positional winning strategy σ, meaning that the strategy does
not consider the previously seen vertices, but only the current vertex. More
formally, a positional strategy σi for Player i can be represented by a mapping
σi : Vi \ T → V such that (v, σi(v)) ∈ E for all v ∈ Vi.

3 Deterministic Top-down Specifications
Here we investigate uniformization of tree-automatic relations in the class of
top-down tree transformations. We restrict ourselves in the scope of Section 3.1
and 3.2 to D↓TA-recognizable relations with total domain. Later on, in Section
3.3, we will briefly describe how we can deal with D↓TA-recognizable relations
whose domain is not total but D↓TA-recognizable. In the course of this, we will
consider two variants of uniformization. The classical uniformization setting,
where invalid input trees have to be rejected and a more relaxed setting, where
for each valid input tree the transducer selects one output tree, on each other
input tree which is not part of the domain the transducer may behave arbitrarily.
To distinguish between these cases, we will speak of uniformization with input
validation and uniformization without input validation.

For Section 3.1 and Section 3.2, let R ⊆ TΣ×TΓ be a deterministic top-down
tree automaton-definable relation with total domain and let A = (QA,Σ⊥ ×
Γ⊥, q

A
0 ,∆A) be a D↓TA that recognizes R. Further, we assume Σ is given as⋃m

i=0 Σi. For q ∈ QA, let Aq be the automaton that results from A by using q
as single initial state.

To begin with, we investigate the connection between input and output.
Intuitively, given an input tree t and an output tree t′, a deterministic tree-
automatic specification may only set a node u of t′ in relation to a node v of t if
v is a predecessor resp. successor of u, i.e., if v v u resp. u v v. This is due to the
fact that deterministic top-down tree automata cannot specify conditions that
require information from divergent paths. However, a top-down tree transducer
may produce output at a node u while reading some v′ such that v′ lies on a
divergent path, i.e., v′ 6v u and u 6v v′. Later on, we will see that if a uniformizer
does not use the input information on a path along u (but from a divergent path)
in order to produce output at u, then the deterministic specification in fact does
not relate – from some point on – the output to the input. Consequently, the
specification can be satisfied by selecting a single output tree that matches all
possible input trees. The lemma below shows that this property is decidable.

Lemma 3 Given A and a state q of A, the following properties are decidable:

1. ∀t ∈ TΣ : t⊗⊥ ∈ T (Aq),

2. ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq),

8



3. ∃t′ ∈ TΓ ∀t ∈ TΣ : t⊗ t′ ∈ T (Aq).

Proof.

1. Let T1 = T (Aq) ∩ (TΣ × {⊥}), then ∀t ∈ TΣ : t ⊗ ⊥ ∈ T (Aq) ⇔ T1 is
universal (over Σ× {⊥}).

2. Let T2 = T (Aq) ∩ ({⊥} × TΓ), then ∃t′ ∈ TΓ : ⊥ ⊗ t′ ∈ T (Aq) ⇔ T2 is
non-empty.

3. Let T3 be the projection of T (Aq)∩ (TΣ×TΓ) onto its second component,
i.e., T3 = {t′ ∈ TΓ | ∃t ∈ TΣ : t ⊗ t′ /∈ T (Aq)}. Then ∃t′ ∈ TΓ ∀t ∈ TΣ :
t⊗ t′ ∈ T (Aq)⇔ T3 is non-empty.

Since regular tree languages are closed under Boolean operations and projection,
T1, T2, and T3 are regular. It follows that properties 1–3 are decidable because
universality and emptiness of regular tree languages is decidable. �

3.1 Bounded delay
In this section, we consider the question whether there exists a uniformization
of a D↓TA-recognizable relation with total domain such that the output delay
remains inside a given bound. We will solve the following problem.

Theorem 4 Given k ≥ 0, it is decidable whether a given D↓TA-recognizable
relation with total domain has a uniformization by a deterministic top-down
tree transducer with output delay bounded by k.

Before we present a decision procedure, we introduce some notations that
will simplify the presentation. Given Σ =

⋃m
i=0 Σi, let dirΣ = {1, . . . ,m} be the

set of directions compatible with Σ. For Σ =
⋃m
i=0 Σi, the set PathΣ of labeled

paths over Σ is defined inductively by:

• ε is a labeled input path and each f ∈ Σ is a labeled input path,

• given a labeled input path π = x · f with f ∈ Σi (i > 0) over Σ, then π · jg
with j ∈ {1, . . . , i} and g ∈ Σ is a labeled input path.

For π ∈ PathΣ, we define the path path(π) ∈ dir∗Σ and the word labels(π) ∈ Σ∗

induced by π inductively by:

• if π = ε or π = f , then path(ε) = path(f) = ε, labels(ε) = ε and
labels(f) = f ,

• if π = x · jf with j ∈ dirΣ, f ∈ Σ, then path(π) = path(x) · j, labels(π) =
labels(x) · f .

The length || || of a labeled path over Σ is the length of the word induced by its
path, i.e., ||π|| = |labels(π)|.
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For π ∈ PathΣ with ||π|| = k let

TπΣ := {t ∈ TΣ | val t
(
path(π)[1, (i− 1)]

)
= labels(π)[i] for 1 ≤ i ≤ k}

be the set of trees t over Σ such that π is a prefix of a labeled path through t.
For t ∈ TΣ and u ∈ dir∗Σ, let ||t||u := max{|v| | v ∈ domt and (u v v or v v

u)}. If u ∈ domt, then ||t||u is the length of a maximal path in t through u.
Otherwise, if u /∈ domt, then ||t||u is the length of the unique path in t that is
a prefix of u.

Now, in order to solve the above decision problem, we consider a turn-
based safety game between two players. The procedure is similar to a decision
procedure presented in [6], where the question whether a uniformization of an
automatic word relation by a word transducer exists, is reduced to the existence
of winning strategies in a safety game. Here, the game is played between In
and Out, where In can follow any path from the root to a leaf in an input tree
such that In plays one input symbol at a time. Out can either react with an
output symbol, or delay the output a bounded number of times and react with a
direction in which In should continue with his input sequence. The objective of
Out is to ensure that the pair of input sequence and output sequence obtained
from the moves of the players satisfies the specification.

The vertices in the game graph keep track of the state of A on the input
combined with the output on the same path and additionally of the input that
is ahead, which is bounded by k. We will see that it is not necessary to consider
situations where input and output are on divergent paths. The intuition behind
this is that D↓TAs cannot compare information on divergent paths through an
input tree. Formally, the game graph GkA is constructed as follows.

• VIn = {
(
q, πj

)
∈ QA × PathΣ · dirΣ | ‖π‖ ≤ k, π ∈ PathΣ, j ∈ dirΣ} ∪ 2QA

is the set of vertices of player In.

• VOut = {
(
q, π
)
∈ QA×PathΣ | ‖π‖ ≤ k+ 1} is the set of vertices of player

Out.

• From a vertex of In the following moves are possible:

i)
(
q, πj

)
→
(
q, πjf

)
for each f ∈ Σ if ‖π‖ < k + 1 (delay; In chooses

the next input symbol)

ii) {q1, . . . , qn} →
(
qi, f

)
for each f ∈ Σ and each i ∈ {1, . . . , n}

(no delay; In chooses the next direction and input symbol)

• From a vertex of Out the following moves are possible:

iii)
(
q, f
) r→ {q1, . . . , qi} if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A, f ∈ Σ

is i-ary, g ∈ Σ⊥ is j-ary, n = max{i, j}, and if j > i, there exist trees
ti+1, . . . , tj ∈ TΓ such that ⊥⊗ t` ∈ T (Aql) for all i < ` ≤ j.

(no delay; Out applies a transition; Out can pick output trees for all
directions where the input has ended; In can continue from the

other directions)
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Note, if f ∈ Σ0, i.e., the input symbol is a leaf, then the next reached
vertex is ∅ ∈ VIn, which is a terminal vertex.

iv)
(
q, fjπ

) r→
(
qj , π

)
if there is r = (q, (f, g), q1, . . . , qn) ∈ ∆A with

n = max{rk(f), rk(g)} such that for each ` 6= j with ` ∈ {1, . . . , n}
holds
– if ` ≤ rk(f), rk(g), then there exists t′ ∈ TΓ such that t ⊗ t′ ∈
T (Aq`) for all t ∈ TΣ,

(input and output continue)
– if rk(g) < ` ≤ rk(f), then t⊗⊥ ∈ T (Aq`) for all t ∈ TΣ,

(input continues, output has ended)
– if rk(f) < ` ≤ rk(g), then there exists t′ ∈ TΓ such that ⊥⊗ t′ ∈
T (Aq`).

(output continues, input has ended)

(delay; Out applies a transition, removes the leftmost input symbol
and advances in direction of the labeled path ahead; Out can pick

output trees for all divergent directions)

v)
(
q, πjf

)
→
(
q, πjfj′

)
for each j′ ∈ {1, . . . , i} for f ∈ Σi if ‖πjf‖ <

k + 1

(Out delays and chooses a direction from where In should continue)

• The initial vertex is {qA0 }.

Note that the game graph can effectively be constructed, because Lemma 3
implies that it is decidable whether the edge constraints are satisfied. The edge
labels are introduced to improve readability, but they are not necessary.

The winning condition should express that player Out loses the game if the
input can be extended, but no valid output can be produced. This is represented
in the game graph by a set of bad vertices B that contains all vertices of Out
with no outgoing edges. If one of these vertices is reached during a play, Out
loses the game. Thus, we define GkA = (GkA, V \B) as safety game for Out.

Example 5 Let Σ be an input alphabet given by Σ2 = {f} and Σ0 = {a} and
let Γ be an output alphabet given by Γ2 = {f, g} and Γ0 = {b}. Consider the re-
lationR := {(t, t′) ∈ TΣ×TΓ | domt = domt′ and in t′, every path of length at least 1 contains an f}.

It is easy to see that D↓TA A = ({q0, q, qf},Σ × Γ, q0,∆A) with ∆A =
{(q0, (a, b)), (q0, (f, f), qf , qf ), (q0, (f, g), q, q), (q, (f, f), qf , qf ), (q, (f, g), q, q),
(qf , (a, b)), (qf , (f, f), qf , qf ), (qf , (f, g), qf , qf )} recognizes R. For k = 1, the
corresponding game graph G0

A is depicted in Figure 2. /

The following two lemmata show that from the existence of a winning strat-
egy a top-down tree transducer that uniformizes the relation can be obtained
and vice versa.

Lemma 6 If Out has a winning strategy in GkA, then R has a uniformization
by a D↓TT in which the output delay is bounded by k.
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{q0}

q0, a q0, f

∅ {qf} {q}

qf , a qf , f q, aq, f

b f g

b
f, g g

f

Figure 2: The game graph G0
A constructed from the D↓TA A from Example 5.

A possible winning strategy for Out in G0
A is emphasized in the graph.

Proof. Assume that Out has a winning strategy in the safety game GkA, then
there is also a positional one. We can represent a positional winning strategy
by a function σ : VOut → ∆A ∪ dirΣ, because Out either plays one output
symbol (corresponding to a unique transition in ∆A), or a new direction for an
additional input symbol.

We construct a deterministic ↓TT T = (QA∪{
(
q, πj

)
|
(
q, πjf

)
∈ VOut},Σ,Γ, qA0 ,∆)

from such a positional winning strategy σ as follows:

a) For each σ :
(
q, f
) r7→ {q1, . . . , qi} with r = (q, (f, g), q1, . . . , qn) ∈ ∆A:

• add q(f(x1, . . . , xi))→ g(q1(x1), . . . , qj(xj)) to ∆ if j ≤ i, or
• add q(f(x1, . . . , xi))→ g(q1(x1), . . . , qi(xi), ti+1, . . . , tj) to ∆ if j > i

where f ∈ Σi, g ∈ Γj and ti+1, . . . , tj ∈ TΓ chosen according to the r-edge
constraints in

(
q, f
)
.

b) For each σ :
(
q, πjf

)
7→
(
q, πjfj′

)
add

(
q, πj

)
(f(x1, . . . , xi))→

(
q, πjfj′

)
(xj′)

to ∆.

If the strategy σ defines a sequence of moves of Out inside vertices of VOut, that
is, a sequence of moves of type iv), then this corresponds to an output sequence
that is produced without reading further input. Each output of these moves
can be represented by a special tree s as follows. A move of type iv) has the
form (q, fjπ)

r→ (q′, π) with r = (q, (f, g), q1, . . . , qn) and q′ = qj . Then, let
s = g(t1, . . . , tj−1, ◦, tj+1, . . . , tn) ∈ SΣ be the special tree, where each tl ∈ TΓ

is chosen according to the r-edge constraints in (q, fjπ) for l 6= j, 1 ≤ l ≤ n.
Eventually, the strategy defines a move of Out of type iii) or v) to a node of
VIn, otherwise σ is not a winning strategy. These parts of the strategy are
transformed as follows:
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c) For each
(
q, πjf

) r1→ . . .
rl−1→

(
q′, π′jf

)
→
(
q′, π′jfj′

)
add

(
q, πj

)
(f(x1, . . . , xi))→

s1 · . . . · sl−1 ·
(
q′, π′jfj′

)
(xj′) to ∆, where each si ∈ SΓ is a special tree cor-

responding to the ri-edge in the ith move.

d) For each
(
q, πjf

) r1→ . . .
rl−1→

(
q′, f

) rl→ {q1, . . . , qi} add
(
q, πj

)
(f(x1, . . . , xi))→

s1 · . . . ·sl−1 ·s to ∆, where each si ∈ SΓ is a special tree corresponding to the
ri-edge in the ith move and s is an output corresponding to rl constructed
as described in step a).

We now verify that T defines a uniformization of R. Clearly, R(T ) ⊆ R because
every rule of T corresponds to a rule of A. We have to show dom(R(T )) =
dom(R) = TΣ. Let t ∈ TΣ. We can show by induction on the number of steps
needed to reach a configuration from the initial configuration (t, qA0 , ϕ0) that for
each configuration c = (t, t′, ϕ) such that Dt′ 6= ∅, in other words t′ /∈ TΓ, there
exists a successor configuration c′. The induction hypothesis states that in c, if
u ∈ Dt′ with ϕ(u) = v, val t(v) = f ∈ Σ, val t′(u) = (q, yj) ∈ QA ×PathΣ · dirΣ,
then the following conditions are satisfied:

• t ∈ T xiyjfΣ for some x ∈ PathΣ and i ∈ dirΣ with path(x)i = u and
path(xiy)j = v, and

• in a play according to σ, the vertex (q, yjf) ∈ VOut is reached after a
sequence of moves corresponding to the labeled path xiyjf .

Since σ is a winning strategy, σ defines the next move of Out from (q, yjf). Con-
sequently, there exists a corresponding transition with left-hand side (q, yj)(f(x1, . . . , xrk(f)))
in ∆T that is applicable at u in t′. This guarantees the existence of a successor
configuration c′. If val t(v) ∈ Σ0, i.e., if T reads a leaf, then by construction
the transition that is applicable at u in t′ is a rule of type a) or d) where the
right-hand side is a tree over Γ.

From the above induction it follows that (t, qA0 , ϕ0) →∗T (t, T (t), ϕ) with
DT (t) = ∅, i.e., T (t) ∈ TΓ, because in each computation step one input symbol
is read and eventually, a leaf is reached and the output is a tree over Γ.

In T the output delay is bounded by k, because the existence of a winning
strategy σ guarantees that from a vertex (q, π) with ||π|| = k, that is reachable
by playing according to σ, a move of Out follows. It follows from the construction
that T produces output accordingly. �

The size of GkA is at most QA · (|Σ| · |dirΣ|)k−1 · |Σ|+ 2QA . For the winning
player, a positional winning strategy can be determined in linear time in the
size of GkA (see Theorem 3.1.2 in [13], which can easily be adapted to safety
games). For a positional winning strategy of Out, the above construction yields
a D↓TT with delay bounded by k that uses at most QA · (|Σ| · dirΣ)k−1 states.

Before we show the other direction, we introduce some new notations. Since
we will consider labeled paths through trees, it is convenient to define the notion
of convolution also for labeled paths. For a labeled path x ∈ PathΣ with ||x|| >
0, let domx := {u ∈ dir∗Σ | u v path(x)} and valx : domx → Σ, where valx(u) =
labels(x)[i] if u ∈ domx with |u| = i + 1. Let x ∈ PathΣ, y ∈ PathΓ with
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path(y) v path(x) or path(x) v path(y), then the convolution of x and y is
x⊗ y defined by domx⊗y = domx ∪ domy, and valx⊗y(u) = (val⊥x (u), val⊥y (u))

for all u ∈ domx⊗y, where val⊥x (u) = valx(u) if u ∈ domx and val⊥x (u) = ⊥
otherwise, analogously defined for val⊥y (u).

Furthermore, it is useful to relax the notion of runs to labeled paths. Let
x ∈ PathΣ, y ∈ PathΓ such that x ⊗ y is defined, i.e., path(y) v path(x) or
path(x) v path(y). We define the run of A on x⊗ y such that it maps all nodes
from domx⊗y as well as all nodes that are a direct successor of a node from
domx⊗y to a state of A. Formally, let the (partial) run of A on x ⊗ y be the
partial function ρ : dir∗Σ → QA such that ρ(ε) = qA0 , and for each u ∈ domx⊗y:
if q := ρ(u) is defined and there is a transition (q, valx⊗y(u), q1, . . . , qi) ∈ ∆A,
then ρ(u.j) = qj for all j ∈ {1, . . . , i}. Let path(x ⊗ y) = v and i ∈ dirΣ.
Shorthand, we write

A : qA0
x⊗y−−−→i q,

if q := ρ(vi) is defined. We write A : qA0
x⊗y−−−→ Acc if rk(valx⊗y(v)) = 0 and

(ρ(v), valx⊗y(v)) ∈ ∆A to indicate that the (partial) run ρ of A on x ⊗ y is
accepting.

We now show the other direction.

Lemma 7 If R has a uniformization by a D↓TT in which the output delay is
bounded by k, then Out has a winning strategy in GkA.

Proof. Assume thatR has a uniformization by some D↓TT T = (QT ,Σ,Γ, q
T
0 ,∆T )

in which the output delay is bounded by k. A winning strategy for Out basically
takes the moves corresponding to the output sequence that T produces for a
read input sequence induced by the moves of In. We show by induction on the
number of moves played by Out that the strategy in GkA can be chosen such
that in every play according to the strategy the following induction hypothesis
is satisfied. In a vertex

(
q, y
)
∈ VOut that is reached by a sequence of moves that

describe a labeled path xiy ∈ PathΣ with x, y ∈ PathΣ, i ∈ dirΣ, path(x)i = u
and path(xiy) = v holds:

a) There exists a tree t ∈ T xiyΣ and a tree s = t[◦/v] · val t(v) obtained from t by
deleting all nodes below v such that the deterministic (partial) run ρA of A
on x⊗ o yields

A : qA0
x⊗o−−→i q,

where o is the unique labeled path over Γ such that T (s) ∈ T oΓ∪QT with
domx⊗o = domx, and

b) if ||y|| > 1, then (t, qT0 , ϕ0) →∗T (t, tout, ϕ) such that there is w ∈ Dtout with
w v u and ϕ(w) = v.

Condition a) states that the final transformed output T (s) of the computation
of T on s specifies (at least) the output at every node on path(x), which means
the partial run ρA on x⊗o already defines the state that A reaches at u, because
u = path(x)i. Note that if ||o|| < ||x||, then o is a labeled path that ends with
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a leaf symbol, otherwise it is not possible that ρA(u) is defined. Condition b)
states that in the computation of T on t, the output mapped to the subtree
rooted at w in T (t) is dependent on the subtree rooted at v in t.

For the induction base, clearly, the induction hypothesis is true at the first
reached vertex of Out, because ρA(ε) = qA0 for every run of A.

For the induction step, assume we are in a node (q, y) ∈ VOut after a sequence
of moves that describe a labeled path xiy ∈ PathΣ and the induction hypothesis
holds for t ∈ T xiyΣ and s obtained from t. From the induction hypothesis, we
know that in T (s) output for every predecessor of u is specified. Then, Out can
make her next move according to whether in T (s) also output at u is specified.
Formally, this means we check if vals⊗T (s)(u) ∈ Σ × Γ⊥, then output at u is
specified. If the second component is ⊥ this implies that the output sequence
has already ended. As a consequence, Out has to chose ⊥ as output move in
this and in every subsequently reached vertex in this play, until the play ends.
Otherwise, vals⊗T (s)(u) ∈ Σ×QT , then output at u is not yet specified.

If no output was specified, i.e., vals⊗T (s)(u) ∈ Σ×QT , this implies that in the
computation of T on t the output at u is dependent on a node below v, because
s contains no nodes below v. Thus, it must hold that there is a configuration
(t, t′, ϕ) of T with (t, qT0 , ϕ0)→∗T (t, t′, ϕ) such that u ∈ Dt′ with ϕ(u) = vj for
some j ∈ dirΣ. Then, Out delays and chooses direction j as next move. This
can happen at most k − ||y|| times in a row because the output delay in T is
bounded by k. The next reached vertex of Out is of the form (q, yjg) ∈ VOut for
some g ∈ Σ. In this vertex, the induction hypothesis can be satisfied for every
t̂ ∈ {t[◦/vj] ·s′ | s′ ∈ T gΣ} ⊆ T

xiyjg
Σ . We pick any such t̂ from this set and denote

by ŝ the corresponding tree t̂[◦/vj] · g that results from t̂ by deleting all nodes
below vj. We now show that the induction hypothesis is satisfied. Clearly,
condition a) is satisfied because T (ŝ) ∈ T oΓ and thus A : qA0

x⊗o−−→i q. Also,
condition b) is satisfied, because as explained above there is a configuration
(t̂, t̂out, ϕ) of T on t̂ reachable such that w ∈ Dt̂out

with ϕ(w) = vj and w = u.
Otherwise, output was specified, i.e., vals⊗T (s)(u) ∈ Σ×Γ⊥. Let vals⊗T (s)(u) =

(f, f ′). Hence, there exists a rule r of the form (q, (f, f ′), q1, . . . , qn) ∈ ∆A since
T uniformizes R. We have to show that there is also an outgoing r-edge from
(q, y) that Out can take. Clearly, this is the case if y = f , i.e., ||y|| = 1. Next,
Out reaches a vertex of the form (qj , g) ∈ VOut for some j ≤ rk(f) and some
g ∈ Σ. The induction hypothesis is satisfied for every t̂ ∈ {t[◦/vj] · s′ | s′ ∈ T gΣ}
because A : qA0

x⊗o−−→i q
f⊗f ′−−−→j qj .

So, assume ||y|| > 1 and let y = fjy′. We have to prove that the r-edge
constraints of type iv) are satisfied. That means, we have to show for each
direction ` 6= j with ` ∈ {1, . . . , n} that there exists an output tree that matches
all possible input trees. More formally, we have to show for each ` 6= j that there
exists an output tree s` such that TΣ×{s`} ⊆ T (Aq`) (or {⊥}×{s`} ⊆ T (Aq`)
if ` > rk(f)).

We pick T (t)|u` for s`. Towards a contradiction, assume TΣ×{s`} 6⊆ T (Aq`).
Then, there is some t` such that t` ⊗ s` /∈ T (Aq`). Consider the tree t′ =
t[◦/u`] ·t` obtained from t by replacing the subtree rooted at u` by t`. Since t′ ∈
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dom(R), t′⊗T (t′) ∈ T (A). The induction hypothesis states that (t, qT0 , ϕ0)→∗T
(t, tout, ϕ) such that w ∈ Dtout with w v u v ϕ(w) = v. This means, the output
mapped to the subtree rooted at w is dependent on the subtree rooted at v.
Since u is below w, this also means, the output mapped to the subtree rooted
at u is dependent on the subtree rooted at v. Hence, T (t)|u = T (t′)|u because
t|v = t′|v. Particularly, also T (t)|u` = T (t′)|u` = s`. Moreover, the run ρ of A
on t′ ⊗ T (t′) yields ρ(u`) = q`. Thus, t` ⊗ T (t′)|u` = t` ⊗ s` ∈ T (Aq`), which is
a contradiction.

Consequently, an r-edge from (q, y) ∈ VOut exists that leads to (qj , y
′) ∈ VOut.

There, the induction hypothesis is satisfied for t and (t, tout, ϕ) as above, because

A : qA0
x⊗o−−→i q

f⊗f ′−−−→j qj and w ∈ Dtout with w v uj v ϕ(w) = v.
As we have seen, Out never reaches a vertex without outgoing edges and

therefore wins. �

As a consequence of Lemma 6 and Lemma 7 together with the fact that
a winning strategy for Out can effectively be computed in GkA we immediately
obtain Theorem 4. Moreover, Lemmata 6 and 7 show that if there exists a uni-
formizer, then there also exists a uniformizer such that read input and produced
output are always on the same path.

3.2 Arbitrary delay
Previously, we considered the question whether there exists a uniformization
of a D↓TA-recognizable relation with total domain such that the output delay
remains inside a given bound. In this section, we will show that this question is
also decidable for the class of all deterministic top-down tree transducers, i.e.,
in particular, there is no restriction on the output delay. We provide a decision
procedure that reduces this question to deciding the winner in a safety game
similar to the safety game presented in the previous section on bounded delay.

To begin with, we give an example of a relation that is uniformizable, but
not by a transducer that has bounded delay.

Example 8 Let Σ be given by Σ2 = {f} and Σ0 = {a, b}. We consider the
D↓TA-recognizable relationR ⊆ TΣ×TΣ that is defined by {(t, a) | the leftmost leaf in t is a}∪
{(t, b) | the leftmost leaf in t is b}.

A transducer can uniformize R by reading the leftmost path in an input
tree without producing output. Eventually, when a leaf is reached, then the
transducer outputs this leaf. This is realized by the following D↓TT T =
({q},Σ,Σ, q,∆) with ∆ = { q(f(x1, x2))→ q(x1), q(a)→ a, q(b)→ b }.

However, there is no D↓TT with bounded delay that uniformizes R. Intu-
itively, a D↓TT that uniformizes R has to know the label of the leftmost leaf
of the input tree in order to produce the correct output. If the output delay
is bounded, say by k, then a D↓TT can wait at most k computation steps be-
fore is has to produce either a or b. If the length of the leftmost path in an
input exceeds k, then the D↓TT has to guess the correct output, but there is
no guarantee that the guess was right. /
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Similar to [6] for automatic word relations, we will see that if the output
delay exceeds a certain bound, then we can decide whether the uniformization
is possible or not. The intuition is that if it is necessary to have such a long
delay between input and output, then only one path in the tree is relevant to
determine an output tree. We can define this property by introducing the term
path-recognizable function. If a relation is uniformizable by a path recognizable
function, then the relation has a uniformization by a D↓TT that first determin-
istically reads one path of the input tree and then outputs a matching output
tree.

Formally, we say a relation R is uniformizable by a path-recognizable func-
tion, if there exists a D↓TT T that uniformizes R such that ∆T only contains
transitions of the following form:

q(f(x1, . . . , xi))→ q′(xj1) or q(a)→ t,

where f ∈ Σi, i > 0, a ∈ Σ0, q, q′ ∈ Q and j1 ∈ {1, . . . , i} and t ∈ TΓ.
Towards a decision procedure for uniformization by D↓TTs with arbitrary de-

lay, we first show that it is decidable for a D↓TA-recognizable relation, whether
it is uniformizable by a path-recognizable function (Theorem 9).

Beforehand, we need to fix some notations. For R ⊆ TΣ × TΓ, π ∈ PathΣ

and q ∈ QA let

Rπ := {(t, t′) ∈ R | t ∈ TπΣ} and Rπq := {(t, t′) ∈ R(Aq) | t ∈ TπΣ}.

If q = qA0 , then Rπq corresponds to Rπ, if additionally π = ε, then Rπq corresponds
to R. Note that a D↓TA that recognizes Rπq can be easily constructed from A.

Sometimes it is sufficient to consider only the output that is mapped to a
certain path. Recall, ||T (t)||u denotes the length of a maximal path in T (t)
through (resp. the length of the maximal path in T (t) that is a prefix of) u. For
a D↓TT T , an input tree t ∈ TΣ or t ∈ SΣ and a path u ∈ dir∗Σ, we define

outT (t, u) := {π ∈ PathΓ | T (t) ∈ TπΓ (X) and (path(π) v u or u v path(π)) and ||T (t)||u = |path(π)|}
to be the set of maximal labeled paths in the output tree T (t) through u.
Note that if ||T (t)||u < |u|, then outT (t, u) is a singleton set and contains the
maximal labeled path π in T (t) such that path(π) is a prefix of u. Then, we
identify outT (t, u) with its single element.

Since we want to capture uniformizability by path-recognizable functions, we
introduce a partial function that yields the state transformation that a labeled
path together with some output sequence on this path induces. However, we
are only interested in the result of the state transformation if it suffices for a
uniformizer to read this labeled path segment in an input tree to (partially)
determine a matching output tree. Formally, let x ∈ PathΣ, y ∈ PathΓ and
i ∈ dirΣ such that x ⊗ y is defined, and let ρq be the partial run of Aq on
x ⊗ y. We define the partial function τxi,y : QA → QA with τxi,y(q) := q′

if Aq : q
x⊗y−−−→i q

′ and for each uj with u ∈ domx⊗y, uj 6v path(x ⊗ y)i, and
j ∈ {1, . . . , rk

(
(val⊥x (u), val⊥y (u))

)
} holds
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• if r := ρq(uj) and j ≤ rk(val⊥x (u)), rk(val⊥y (u)), then there exists t′ ∈ TΓ

such that for all t ∈ TΣ holds t⊗ t′ ∈ T (Ar), and

• if r := ρq(uj) and rk(val⊥y (u)) < j ≤ rk(val⊥x (u)), then for all t ∈ TΣ

holds t⊗⊥ ∈ T (Ar), and

• if r := ρq(uj) and rk(val⊥x (u)) < j ≤ rk(val⊥y (u)), then there exists t′ ∈ TΓ

such that ⊥⊗ t′ ∈ T (Ar).

Lemma 3 implies that it is decidable whether τxi,y(q) is defined. Basically, if
τxi,y(q) is defined, then there exists a fixed (partial) output tree s′ ∈ Syi◦Γ such
that for each input tree t ∈ T xΣ there exists some t′ ∈ TΓ such that t⊗ (s′ · t′) ∈
T (Aq). For convenience, if x resp. y is ε, we also write τ⊥i,y resp. τxi,⊥ instead
of τεi,y resp. τxi,ε. For state transformations τ1, τ2, we define τ1 ◦ τ2 as the
composition of τ1, τ2, that is τ1 ◦ τ2(q) = τ2(τ1(q)) if τ1(q) is defined.

The following theorem shows that is it decidable whether a relation has a
uniformization by a path-recognizable function.

Theorem 9 It is decidable whether a D↓TA-recognizable relation with D↓TA-
recognizable domain can be uniformized by a path-recognizable function.

Proof. Let R ⊆ TΣ × TΓ be a top-down deterministic tree-automatic relation
with top-down deterministic domain. For such a relation, we show that the
existence of a uniformizer that realizes a path-recognizable function is a regular
property over infinite trees. The key ingredient of this proof is an MSO-formula
over infinite trees that asserts the existence of such a uniformizer. We can then
use the equivalence between regular and MSO-definable languages over infinite
trees.

The proof is split in two parts. Recall, to describe a path-recognizable func-
tion, we have to reason about labeled paths through input trees and correspond-
ing output trees. Hence, first, we define a regular infinite tree that is suitable to
specify (via MSO) a set of deterministically readable labeled paths. Secondly,
we state an MSO-formula that is satisfiable by this infinite tree if, and only if,
there exists a finite state uniformizer that realizes a path-recognizable function.

For the first part, we construct a regular infinite tree by defining a finite
graph and using its unfolding to obtain a regular infinite tree, see e.g. [14].
Intuitively, to be able to specify labeled paths in this tree, the node labels
alternate between directions from dirΣ and possible input symbols from Σ (if
the input has not yet ended). A node labeled by f ∈ Σn, n > 0 has exactly n
children, where the ith child is labeled by i. A direction labeled node has an
f -labeled child for every f ∈ Σ (or ⊥ if it occurs below a leaf-labeled node).
For a node labeled by a leaf symbol a ∈ Σ0, the nodes below form a string with
labels alternating between 1 and ⊥. As a special case, the root is labeled by 0.

Formally, let Σ =
⋃m
i=0 Σi and let B = (QB,Σ, q

B
0 ,∆B) be a D↓TA that

recognizes dom(R). We want to construct the desired infinite tree w.r.t. the
domain of the relation. Thus, we define the graph G = (V,E) with vertices
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V ⊆ (QB ∪· {p⊥}) × (Σ⊥ ∪ {0} ∪ dirΣ) and a set of edges E that include the
information of the runs of B, and is defined by{(

(qB0 , 0), (qB0 , f)
)
| f ∈ Σ

}
∪
{(

(p, i), (p, f)
)
| p ∈ QB, i ∈ dirΣ, f ∈ Σ

}
∪
{(

(p, f), (pj , j)
)
| (p, f, p1, . . . , pk) ∈ ∆B, f ∈ Σk, k > 0, j ∈ {1, . . . , k}

}
∪
{(

(p, a), (p⊥, 1)
)
| (p, a) ∈ ∆B, a ∈ Σ0

}
∪
{(

(p⊥, 1), (p⊥,⊥)
)
,
(
(p⊥,⊥), (p⊥, 1)

)}
.

Let (qB0 , 0) be the initial vertex of G and let tG denote the unfolding of G from
this initial vertex.

Now, we give an MSO-formula that is satisfiable by tG if, and only if, R
can be uniformized by a finite state transducer that realizes a path-recognizable
function. Let T Inf

V denote the set of ranked infinite trees over V , the rank of
a symbol v ∈ V is the outdegree of v in G. As usual, an infinite tree t ∈ T Inf

V

corresponds to the logical structure t = (domt, S
t
1, . . . , S

t
m, S

t, (P tv)v∈V ), where
Sti = ith successor relation on domt, St :=

⋃m
i=0 S

t
i , and P tv := {u ∈ domt |

val t(u) = v}. To begin with, we introduce some simple auxiliary formulas:

Pλ(x) :=
∨

p∈(QB ∪· {p⊥})
P(p,λ)(x) for all λ ∈ (Σ⊥ ∪ {0} ∪ dirΣ), and Pdir(x) :=

m∨
i=0

Pi(x).

Also, formulas for set inclusion, prefix closed sets, and partition are needed:

X ⊆ Y := ∀x
(
X(x)→ Y (x)

)
, φpre(X) := ∀x∀y

(
X(y) ∧ S(x, y)→ X(x)

)
, and

φpart(X1, . . . , Xn) := ∀x

 n∨
i=1

Xi(x) ∧
∧

i 6=j∧i,j∈{1,...,n}

¬(Xi(x) ∧Xj(x))

 .

We give a formula that specifies an infinite labeled path. If such a labeled path
contains a ⊥-labeled node, then this labeled path describes a path through a
finite input tree.

Path(X) := ∃x
(
P0(x) ∧X(x)

)
∧ ∀x

(
X(x)→ ∃y (S(x, y) ∧X(y) ∧ ∀z (S(x, z) ∧X(z)→ y = z))

)
.

Furthermore, we want to specify a formula that is satisfied by a set of labeled
paths such that a transducer is able to deterministically read (along a labeled
path from this set) through every possible input tree. This is satisfied if for
a Σ-labeled node that is part of the set, exactly one direction-labeled direct
successor is specified, and in addition, for a direction-labeled node that is part
of the set, every Σ-labeled direct successor is also part of the set, ensuring that
a transducer can react to every input symbol.

PathSet(X) := ∃x
(
P0(x) ∧X(x)

)
∧ ∀x

(
X(x) ∧ Pdir(x)→ ∀y(S(x, y)→ X(y))

)
∧

∀x
(
X(x) ∧ PΣ(x)→ ∃y (S(x, y) ∧X(y) ∧ ∀z (S(x, z) ∧X(z)→ y = z))

)
.
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Ultimately, all formulas are designed to be evaluated in tG . Thus, if (tG , X) |=
Path(X) resp. (tG , X) |= PathSet(X), then X indeed describes a labeled path
resp. a set of labeled paths that can be part of an input tree from the domain
of the relation, because tG is designed w.r.t. the domain of the relation.

Towards our desired formula, given a labeled path and a prefix of this path,
we want to express that there exists an output labeling of the given prefix such
that there is an accepting (partial) run of A on the combination of input labels
and output labels on this path. Additionally, since we want to obtain a path-
recognizable function in the end, we require that the partial run can be extend
to a successful run for each input tree that contains this labeled path, i.e., we
require that the run only depends on the given labeled path. Recall, we already
have a formal notion for this. Let A = (QA,Σ⊥ × Γ⊥, q

A
0 ,∆A) be a D↓TA that

recognizes R. For x ∈ PathΣ, y ∈ PathΓ and i ∈ dirΣ such that x⊗ y is defined,
i.e., path(x) v path(y) or path(y) v path(x), the function τxi,y is defined for a
state q of A, if there is a partial run ρ on x ⊗ y of Aq with A : q

x⊗y−−−→i q
′ and

there exists a fixed partial output tree s ∈ Syi◦Γ such that ρ can be extend to
a successful run of Aq on each input tree t ∈ T xΣ together with an output tree
s · t′ ∈ T yΓ , that is, an output tree whose first part is always s.

The following formula expresses the requirements stated above. Let QA =
{q1, . . . , qn}, q1 = qA0 , and Γ = {g1, . . . , g`}, we then write

RPath(X,Y ) := Path(X) ∧ Y ⊆ X ∧ φpre(Y )∧

∃Yg1 . . . ∃Yg`∃Y⊥∃Xq1 . . . ∃Xqn

(
φpart(Yg1 , . . . , Yg` , Y⊥) ∧ φpart(X1, . . . , Xn)∧

∀y
(
Y (y)→ ¬Y⊥(y)

)
∧ ∃x∃y

(
P0(x) ∧ S(x, y) ∧X(x) ∧Xq1(y)

)
∧

∀x∀d∀y
[
S(x, d) ∧ S(d, y) ∧ Pdir(d) ∧X(x) ∧X(d) ∧X(y) ∧ ¬

(
P⊥(y) ∧ Y⊥(y)

)
→( ∨

(q,(f,g),q1,...,qj)∈∆A,
τfi,g(q)=qi

Xq(x) ∧ Pf (x) ∧ Yg(x) ∧ Pi(d) ∧Xqi(y)
)]
∧

∃x
[
X(x) ∧ ¬Pdir(x)→

( ∨
(q,(f,g))∈∆A

Xq(x) ∧ Pf (x) ∧ Yg(x)
)])

.

The above formula describes the existence of a successful (partial) run of A on
π⊗o with τπ,o(q1) = Acc, where π is the labeled path considered in the input tree
(π corresponds to the valuation of X) and path(o) is the path considered in the
output tree (path(o) corresponds to the valuation of Y , the formula expresses
the existence of suitable output labels for o). For each state q ∈ QA, Xq states
that on the ith position in π, the automaton is in state q iff Xq(i); for each
output symbol g ∈ Γ, Yg states that the label of the ith position in o is g iff
Yg(i). The formula ∃x∃y

(
P0(x)∧S(x, y)∧X(x)∧Xq1(y)

)
states that the run ρ

begins in the initial state q1 of A; the formula that occurs below in RPath(X,Y )
states thats that for every pair of two successive positions (y is the ith child of
x iff Pi(d)) in the run ρ there is a transition permissible by ∆A and additionally
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τfi,g(ρ(x)) = ρ(y) if f is the input label of x and g is the output label; the last
formula ∃x

[
X(x) ∧ ¬Pdir(x) →

(∨
(q,(f,g))∈∆A

Xq(x) ∧ Pf (x) ∧ Yg(x)
)]

states
that at the last position of π⊗o, i.e., at the leaf, a transition is applicable which
makes the run accepting.

We need one more auxiliary formula. To obtain a finite state transducer
that realizes a path-recognizable function, we require that only finitely many
different output trees are needed. If only finitely many different output trees are
needed, then the length of the output sequences that are mapped to the relevant
labeled paths is bounded, that is, the set of needed output sequences is finite.
The next formula is satisfied by a finite set that describes prefixes of labeled
paths. If all needed output sequences stay inside the positions specified by the
set, then this implies that finitely many different output sequences suffice.

φpre,fin(X) := φpre(X) ∧ ∀X1

(
Path(X1)→ ∃x

[
X1(x) ∧X(x) ∧ ¬

(
∃y
[
S(x, y) ∧X1(y) ∧X(y)

])])
.

Now, we are ready to state the desired formula. The formula describes that there
is a set of deterministically readable labeled paths such that for each labeled
path from this set that describes a path through a finite input tree there is a
matching output and additionally the set of used matching outputs (along the
relevant paths) is finite.

φunif :=∃X∃Y
(

PathSet(X) ∧ Y ⊆ X ∧ φpre,fin(Y )∧

∀X1

[
X1 ⊆ X ∧ Path(X1) ∧ ∃x

(
X1(x) ∧ P⊥(x)

)
→ ∃Y1

(
Y1 ⊆ Y ∧RPath(X1, Y1)

)])
.

Since the equivalence between MSO-definable tree languages and regular tree
languages is effective, we can construct an automaton Aφunif

such that T (Aφunif
)

is equivalent to T (φunif) := {t ∈ T Inf
V | t |= φunif}.

Finally, we claim tG ∈ T (Aφunif
) if, and only if, R is uniformizable by a finite

state transducer that realizes a path-recognizable function. If R is uniformized
by a path-recognizable function, then there exists an assignment of the variables
such that tG |= φunif . From a D↓TT T that uniformizes R and realizes a path-
recognizable function we can obtain a valuation as follows. Recall that a position
in tG can be either interpreted as a labeled path, or as a path resp. a position
in a tree if we disregard the labels. Concerning the valuation of X, a position
is included in the set X if it describes a (prefix of a) labeled path that the
uniformizer reads from the root to a leaf in an input tree in order to produce
an output tree. Generally, such a uniformizer specifies a set of finite labeled
paths of arbitrary length. However, since φunif , more specifically its subformula
PathSet(X), requires X to describe a set of infinite labeled paths, for each
finite labeled path π that the uniformizer reads, X also includes the positions
that describe its infinite extension π(1⊥)ω. Then X describes the desired set
of infinite labeled paths. Concerning the valuation of Y , we have to consider
the output trees that T produces. These are only finitely many different trees,
say t1, . . . , tk. We choose Y as the subset of X such that a position from X
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is included in Y if there is (at least) one ti such that this position describes a
position that occurs in domti . Since the set domt1 ∪ · · · ∪domtk is finite, also Y
is finite. Then tG |= φunif , because for each finite labeled path from the set X
the set Y describes a prefix of this path such that there is an output sequence
that can be mapped to this prefix (obtained from one of the tis) such that A
has a successful (partial) run on this input and output combination.

If tG ∈ T (Aφunif
), then there exists a valuation of the variables such that a

regular ([15], see also [14]) deterministically readable set of labeled paths can be
obtained that captures every input tree. Since this set is regular, it is recogniz-
able by a finite state transducer. Additionally, the valuation of Y yields a global
bound such that the size of each output mapped to a relevant path through an
input tree remains inside this bound. Consequently, only finitely many different
output trees are needed. Hence, there exists a finite state uniformizer that real-
izes a path-recognizable function, such a uniformizer can e.g., be constructed in
the following way. Clearly, a deterministic finite state top-down tree transducer
that reads the relevant path in an input tree can be obtained from a regular set
of labeled paths. Also, a global bound of the length of needed output sequences
on the relevant paths is known. Since there are only finitely many output se-
quences that remain inside the bound, the transducer can simulate for each
such output sequence the partial run of A on the read input sequence together
with this output sequence in its state space. Eventually, when a leaf is reached,
at least one of the simulated partial runs is accepting. The transducer then
produces an output tree matching to the (chosen) accepting run. �

We have seen that it is decidable whether a specification has a uniformization
by a path-recognizable function. Given a specification, our goal is to show
that there exists a computable bound on the output delay with the following
property: If it is necessary for a transducer to introduce delay that exceeds the
bound in order to satisfy the specification, then either the uniformization task
is impossible, or the remaining specification has a uniformization by a path-
recognizable function, which is decidable by Theorem 9.

Towards the choice of the bound, we first introduce profiles for labeled path
segments. We define the profile of a labeled path segment xi to be the set that
contains all possible state transformations induced by x together with some y
of same or smaller length. Formally, let x ∈ PathΣ and i ∈ dirΣ, we define the
profile of xi to be Pxi = (Pxi,=, Pxi,<, Pxi,ε) with

Pxi,= := {τxi,y | |y| = |x|}, Pxi,< := {τxi,y | y 6= ε and |y| < |x|}, and
Pxi,ε := {τxi,y | y = ε}.

From Px1i1 and Px2i2 the profile Px1i1x2i2 is uniquely determined, i.e.,

Px1i1x2i2,= := {τ1 ◦ τ2 | τ1 ∈ Px1i1,=, τ2 ∈ Px2i2,=},
Px1i1yi,< := {τ1 ◦ τ2 | τ1 ∈ Px1i1,=, τ2 ∈ Px2i2,<} ∪ {τ1 ◦ τx2i2,ε | τ1 ∈ Px1i1,<},

and Px1i1x2i2,ε := {τx1i1,ε ◦ τx2i2,ε}.

Thus, the concatenation of Px1i1 , Px2i2 is naturally defined by Px1i1 · Px2i2 =
Px1i1x2i2 . A segment xi ∈ (ΣdirΣ)∗dirΣ of a labeled path is called idempotent
if Pxi = Pxixi.
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As a consequence of Ramsey’s Theorem [16], we obtain the next remark.

Remark 10 There exists a bound K ∈ N such that each labeled path π ∈ PathΣ

with ||π|| ≥ K contains an idempotent factor.

Proof. Ramsey’s Theorem yields that for any number of colors c and any number
r, there exists a number K ∈ N such that if the edges of a complete graph with
at least K vertices are colored with c colors, then the graph must contain a
complete subgraph with r vertices such that all edges have the same color, c.f.
[17].

Let π ∈ PathΣ with the factorization π = f1j1 . . . jn−1fn, f1, . . . , fn ∈ Σ
and j1, . . . , jn−1 ∈ dirΣ. Consider the complete graph G = (V,E, col) with
edge-coloring col : E → Cols, where V := {1, . . . , n}, E := V × V , Cols is
the finite set of profiles and col(e) := Pfiji...fkjk if e = (i, k) for all e ∈ E. If
there exist i, j, k ∈ N with i < j < k ≤ n such that the edges (i, k), (i, j) and
(j, k) have the same color, i.e., the respective profiles are the same, then π has
a factorization that contains an idempotent factor.

As a consequence of Ramsey’s Theorem, for r = 3 and c = |Cols|, if n ≥ K,
then π must contain an idempotent factor. �

We introduce some additional notation on how to split a tree in parts and
how to repeat a part of a tree that contains an idempotent factor. For a special
tree s ∈ SΣ, we inductively define the special tree sn ∈ SΣ by sn := sn−1 · s and
s0 := ◦ for n ∈ N. Let x, y ∈ PathΣ, i, j ∈ dirΣ, and path(x)i = u, path(y)j = v.
For a tree t ∈ T xiyΣ , we introduce shorthand notations t[:u], t[u:uv], and t[uv:] to
denote t[◦/u], t[◦/uv]|u, and t|uv, respectively. Note that t = t[:u] · t[u:uv] · t[uv:].
Furthermore, let y 6= ε and yj be an idempotent factor, we fix tn(u,v) to be the
tree that results from repeating the idempotent factor n times. More formally,
we define

tn(u,v) := t[:u] · tn[u:uv] · t[uv:] for n ∈ N.

If it is clear from the context to which idempotent factor we refer, then we leave
out the subscript.

The next lemma formally establishes the connection between long output
delay and path-recognizable functions. Basically, the lemma states that if there
exists a uniformization by a D↓TT such that an idempotent path segment can
be repeated any number of times and the length of the output on the repeti-
tion is bounded, i.e., the output delay is unbounded, then there also exists a
uniformization by a path-recognizable function.

Lemma 11 Given a D↓TA-recognizable relation R with D↓TA-recognizable do-
main, x, y ∈ PathΣ, i, j ∈ dirΣ with path(x)i = u, path(y)j = v, y 6= ε and yj
idempotent. For a tree t ∈ T xiyΣ let tn denote the tree obtained from t, where the
idempotent factor yj is repeated n times.

If Rxiy is uniformized by a D↓TT T such that for each t ∈ T xiyΣ and each
n ∈ N there is a reachable configuration (tn, tno , ϕn) of T on tn such that

1. T reads the path uvn in tn, i.e., there is a node αn ∈ domtno
with ϕn(αn) =

uvn and
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2. the output produced on uvn does not exceed the node u in tn, i.e., αn v u,

then Rxiy can be uniformized by a path-recognizable function.

Proof. We use the characterization from the proof of Theorem 9. To show
the statement of this lemma it suffices to show that the MSO-sentence φunif

constructed from a D↓TA A for Rxiy is satisfied by tG constructed from a D↓TA
B for its domain. We state the sentence again:

φunif := ∃X∃Y
(

PathSet(X) ∧ Y ⊆ X ∧ φpre,fin(Y )∧

∀X1

[
X1 ⊆ X ∧ Path(X1) ∧ ∃x

(
X1(x) ∧ P⊥(x)

)
→ ∃Y1

(
Y1 ⊆ Y ∧RPath(X1, Y1)

)])
.

We have to provide a suitable valuation for X and Y . Recall, the set X
has to describe a regular set of labeled paths such that a transducer is able to
deterministically read through every possible input tree. The set Y has to be
a finite set representing the needed output trees, that is, for a labeled path π
described by X there exists a suitable output tree to ∈ TΓ described by Y such
that (t, to) ∈ Rxiy for each t ∈ TπΣ .

We proceed as follows. For each input tree t ∈ dom(Rxiy), we choose a
labeled path π from the root to a leaf that should be described by X and choose
a matching output tree to that should be described by Y . Then, we prove that
the resulting set X describes a deterministically readable set of labeled paths
and that the resulting set Y is finite.

We use the following observation. For each t ∈ T xiyΣ , recall t is of the form
t[:u] ·t[u:uv] ·t[uv:], holds that if the idempotent factor yj is repeated often enough,
say n times, then ||outT (t[:u] · tn[u:uv] · t[uv:], uv

n)|| < |uvn|. This follows from
the assumption that the output produced on t[:u] · tn[u:uv] does not exceed u. So
if n is large enough, the additional output produced on t[uv:] does not exceed
uvn. In the following, this allows us to pick an output tree to whose height
only depends on xiy such that (t, to) ∈ Rxiy for each input tree t ∈ dom(Rxiy).
Another needed (technical) observation is, there exists a state s of T and integer
m1 < m2 such that s is reached at the node uvm1 and again at uvm2 in a tree
tm2 for each t ∈ T xiyΣ .

Now, consider an arbitrary input tree t ∈ dom(Rxiy), we can pick some k
such that ||outT (tk, uvk)|| < |uvk| and in a computation of T on tk the unifor-
mizer is in state s at the node uvk. Then, the set X includes the description
of a labeled path π ∈ PathΣ of the form xiyjz with path(z) = w if t ∈ TπΣ
and the following holds. The labeled path xi(yj)kz must be the unique labeled
path from the root to a leaf in tk that the uniformizer reads in order to pro-
duce output mapped to xi(yj)k−1y, that is, output mapped to the repetitions
of the idempotent factor. Formally, this means outT (tk, uvkw) = o for some
o ∈ PathΓ and path(o) v uvk. Consider the factorization of o = o1io2 such
that ||o1|| = ||x||, then ||o2|| ≤ ||(yj)k−1y||, because the choice of k ensures
||outT (tk, uvk)|| < |uvk|.

We now pick some to ∈ TΓ such that (t, to) ∈ Rxiy. Let the specification be
recognized by some D↓TA A. Consider the deterministic successful run of A on
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tk ⊗ T (tk) along uvkw which looks as follows:

A : q0
x⊗o1−−−→i q1

(yj)k−1y⊗o2−−−−−−−−→j q2
z⊗ε−−→ Acc.

Note that since A is deterministic, for each tree t̃ from T
xi(yj)kz
Σ the run of

A on t̃k ⊗ T (t̃k) has the same form along xi(yj)kz. Hence, τxi,o1(q0) = q1,
τ(yj)k,o2(q1) = q2 and τz,ε(q2) = Acc. In words, there exists a fixed output tree

t̃o ∈ T o1io2Γ such that (t̃, t̃o) ∈ Rxiy for each tree t̃ from T
xi(yj)kz
Σ . Also, since

yj is idempotent, there is some o3 ∈ PathΓ such that τ(yj)k,o2 = τyj,o3 with
||o3|| ≤ ||y||. Let to denote an output tree corresponding to τxiyjz,o1io3 . Thus,
a run of A on t⊗ to along uvw has the following form:

A : q0
x⊗o1−−−→i q1

y⊗o3−−−→j q2
z⊗ε−−→ Acc,

i.e., (t, to) ∈ Rxiy. Hence, we chose the description of to to be included in the
set Y . Consequently, for a valuation of X1 ⊆ X corresponding to π = xiyjz and
a valuation of Y1 ⊆ Y corresponding to o1io3 the MSO-formula RPath(X1, Y1)
describing the existence of a successful (partial) run of A on π ⊗ o1io3 with
τπ,o1io3(q0) = Acc is satisfied.

Now we argue why X describes a regular set of deterministically readable
paths. Recall the conditions that a labeled path π for a tree t ∈ TπΣ fulfills when
it is described by X. The labeled path π is of the form xiyjz for some z and
xi(yj)kz is the labeled path that is read by T in tk in order to determine the
output on xi(yj)k−1y for some suitable choice of k such that the segment z is
read from state s of T . Thus, the form of each labeled path in X is determined
by Ts. Hence, X is a subset of the labeled paths read by Ts (prefixed by xiyj).
A finite deterministic automaton that recognizes the labeled paths read by Ts
which determine the output mapped to the repetitions of the idempotent factor
can be constructed from Ts. This implies that X describes a regular set of
labeled paths deterministically readable by a transducer.

We have shown that for each finite labeled path π from the root to a leaf that
is described by X there exists a suitable output tree to, furthermore the size of
such a to is bounded by the length of xiy, thus only finitely many different tos are
needed. Hence Y is a finite set representing the needed tos. This concludes the
proof, we have seen that a suitable valuation for X and Y exists such that the
MSO-sentence φunif is satisfied, i.e., Rxiy is uniformizable by a path-recognizable
function. �

As we have seen, if a transducer that uniformizes a relation introduces long
output delay, then the relation can also be uniformized by a path-recognizable
function.

Before we present the decision procedure, we introduce a complexity measure
for D↓TTs w.r.t. the lookahead that the transducer introduces. This will help
us reason about the behavior of a uniformizer with minimal complexity. The
idea is to measure the complexity of a uniformizer by counting the introduced
lookahead. Since it is not necessary for a uniformizer to have divergent input and
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output paths, we will only consider lookahead-paths where input and produced
output overlap. Also we do not consider lookahead-paths that could be part of
a path-recognizable function, because this is generally an infinite set of paths.

For a D↓TA-recognizable relation R, a D↓TT T that uniformizes R, and
a limit l ∈ N, we define the lookahead-path-language LPLT (R, l) such that
π ∈ PathΣ is included if the following conditions hold:

• There is a t ∈ TπΣ ∩ dom(R) with (t, qT0 , ϕ0) →T (t, t1, ϕ1) →T · · · →T
(t, tn, ϕn) such that there is ui ∈ Dti ∩ domπ with ui v ϕi(ui) v path(π)
and |ui| < l and ϕn(un) = path(π) and it occurs output delay w.r.t. ui in
(t, ti, ϕi) for all i ∈ {1, . . . , n}, and

• Rπ is not uniformizable by a path-recognizable function.

Note, LPLT (R, l) is a prefix-closed set. Furthermore, we define value(LPLT (R, l))
to be the sum of all lengths of all labeled paths, i.e.,

∑
π∈LPLT (R,l) ||π||.

Lemma 12 The set LPLT (R, l) is finite.

Proof. We prove this statement by contradiction. Assume LPLT (R, l) is infinite.
Then LPLT (R, l) contains labeled paths of arbitrary length. We pick some
π ∈ LPLT (R, l) such that ||π|| > l + l ·K|QT | with K from Remark 10. Now,
we prove that Rπ is uniformizable by a path-recognizable function. This is a
contradiction to π ∈ LPLT (R, l).

Pick any t ∈ TπΣ ∩ dom(R) and let c0 = (t, qT0 , ϕ0). The configuration
sequence witnessing membership of π in LPLT (R, l) has length > l+ l ·K|QT |.
For each j ∈ {0, . . . , l − 1}, we can thus pick a subsequence of configurations
c1 = (t, t1, ϕ1), c2 = (t, t2, ϕ2), . . . , cK = (t, tK , ϕK) with c0 →∗T c1 →∗T · · · →∗T
cK such that there is s ∈ QT and ui ∈ Dti ∩ domπ with val ti(ui) = s for
all i ∈ {1, . . . ,K} and furthermore l + j · K|QT | < |ϕ1(u1)| and |ϕK(uK)| ≤
l + (j + 1) ·K|QT |.

Let πj denote the jth segment of length K|QT | of π starting after the first l
letters of π. Together with Remark 10 it follows that each such segment contains
an idempotent factor yj2 such that π = xj1yj2z with path(x1)j1 = ϕm(um) and
path(xj1y)j2 = ϕn(un) for some m < n ≤ K w.r.t. a suitable subsequence.
There are at least l such segments in π, because ||π|| > l + l ·K|QT |.

Since π ∈ LPLT (R, l), there is at least one segment πj such that T does not
produce output while reading the idempotent factor in πj . Otherwise, T would
produce at least l output symbols while reading π, which is a contradiction to
π ∈ LPLT (R, l). Consider a subsequence that yields an idempotent factor yj2
such that π = xj1yj2z with path(x1)j1 = ϕm(um) and path(xj1y)j2 = ϕn(un)
for some m < n ≤ K such that T produces no output while reading yj2. Let
ϕm(um) = vm and ϕn(un) = vn. Then, since ||outT (t[:vm] · tk[vm:vn], path(π))|| <
l for all k ∈ N, Lemma 11 implies that Rπ can be uniformized by a path-
recognizable function. �

From the above lemma it follows directly that value(LPLT (R, l)) ∈ N. This
allows us to compare uniformizers by comparing their values. We say T has
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minimal complexity w.r.t. l if value(LPLT (R, l)) ≤ value(LPLU (R, l)) for every
D↓TT U that uniformizes R. The next lemma gives a bound on the length
of the elements in the lookahead-path language of a uniformizer with minimal
complexity. The idea is that a uniformizer with minimal complexity does not
further delay the output if the lookahead-path contains an idempotent factor
(unless the relation has to be uniformized by a path-recognizable function). We
use this statement in the proof of Lemma 14 for the construction of a winning
strategy from a uniformizer. There we need to work with a uniformizer that
is not of absolute minimal complexity, but only among those uniformizers that
have a specific path in their lookahead-path language. For this reason, we need
to introduce the extra path γ in the statement of Lemma 13. Let K be as in
Remark 10.

Lemma 13 Let R be a D↓TA-recognizable relation with D↓TA-recognizable do-
main and let T be a D↓TT that uniformizes R. Given some limit l ∈ N and
given some γ ∈ LPLT (R, l) with ||γ|| ≤ l, if T has minimal complexity w.r.t. l
in comparison to every other D↓TT U with γ ∈ LPLU (R, l) that uniformizes R,
then the length of a lookahead-path from LPLT (R, l) is bounded by l +K.

Proof. Proof by contradiction. Assume there is a labeled path π ∈ LPLT (R, l)
such that ||π|| > l + K, then by Remark 10 there exists a factorization of π
into xiyjz such that yj is an idempotent factor and l ≤ ||x||. Furthermore, it
follows from Remark 10 that yj can be split into y1dy2j such that y1d, y2j and
yj have the same profile, i.e., Py1d = Py2j = Pyj . Towards a contradiction, first,
we show that there is a uniformizer U with γ ∈ LPLU (R, l) such that xiy1dy2

is never a prefix of a labeled path in LPLU (R, l), but xiy1 is a prefix of some
labeled paths in LPLU (R, l). Intuitively, this means, it is in fact not necessary
for a uniformizer to read the idempotent factor y2j when y1d has already been
read. Consequently, the lookahead-paths can be shortened. Secondly, we show
that value(LPLU (R, l)) < value(LPLT (R, l)).

For the first part of the proof, our goal is to construct a uniformizer U based
on T that realizes the following transformation. If t /∈ T xiy1Σ , then U produces
the same output as T , i.e., T (t) = U(t). Otherwise, if t ∈ T xiy1Σ , then U
produces an output tree obtained as follows. Let path(x)i = u, path(y1)d = v1,
path(y2)j = v2 and we fix ty2 to be a special tree from Sy2j·◦Σ . For a tree
t ∈ T xiy1Σ , we let tx = t[:u], ty1 = t[u:uv1] and t̃ = t[uv1:], that is, t is factorized
into tx ·ty1 · t̃. Furthermore, we denote by t′ the tree tx ·ty1 ·ty2 · t̃ that is obtained
from t by inserting ty2 . The output of U on t is based on the computation of T
on t′. Consider the output tree T (t′) ∈ TΓ which can be split into to1 ·to2 ·to3 ·to4 ,
where to1 ∈ S

o1i◦
Σ , to2 ∈ S

o2d◦
Σ , to3 ∈ S

o3j◦
Σ and to4 ∈ TΣ such that o1io2do3 is

the labeled path over Γ with ||x|| = ||o1||, ||y1|| = ||o2||, ||y2|| = ||o3|| and
path(xiy1dy2) = path(o1io2do3). That is, o1io2do3 is the part of the output
tree T (t′) that is mapped to xiy1dy2 in the input tree t′. In particular, to1 is
mapped to tx, to2 is mapped to ty1 , to3 is mapped to ty2 , and to4 is mapped to
t̃. Then, for t = tx · ty1 · t̃ the D↓TT U produces U(t) = to1 · to · to4 , such that
to ∈ Sod◦Γ is an output tree chosen as described below. Let R be recognized by
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a D↓TA A. Then, the run of A on t′ ⊗ T (t′) along uv1v2 results in

A : qA0
x⊗o1−−−→i q1

y1⊗o2−−−−→d q2
y2⊗o3−−−−→j q3.

Note that we obtain (q1, q3) ∈ τy1dy2j,o2do3 , because the (partial) output tree to3 ·
to4 produced by T only depends on the read lookahead. Since y2j is idempotent
and Py1d = Py2j , we obtain Py1d = Py1dy2j . Thus we can pick a labeled path o ∈
PathΓ such that ||o|| = ||y1|| and y1 ⊗ o induces the same state transformation
as y1dy2 ⊗ o2do3 on A w.r.t. direction d. Let to ∈ Sod◦Γ be a (partial) output
tree compatible to o in the sense that for each input tree tin ∈ T y1Σ there is
some tout ∈ TΓ such that tin ⊗ (to · tout) ∈ T (Aq1), which is guaranteed to exist
because τy1d,o(q1) is defined. Now we show that t⊗U(t) ∈ R. The run of A on
t⊗ U(t) along uv1 results in

A : qA0
x⊗o1−−−→i q1

y1⊗o−−−→d q3,

where o1io is the labeled path over Γ such that U(t) ∈ T o1ioΓ . By construction
of U we have T (t′)|uv1v2 = U(t)|uv1 = to4 and also t′|uv1v2 = t|uv1 = t̃. Since
the run ρ of A on t′ ⊗T (t′) results in ρ(uv1v2) = q3 and since t̃⊗ to4 ∈ Rq3 , we
obtain t⊗ U(t) ∈ R. Hence, U uniformizes R.

We have seen that U is a uniformizer for R. Now, we explain how U can
be constructed from T . First, we have to verify whether a labeled path that
has xiy1 as prefix is read. This can be done by copying for the first ||xiy1||
computation steps the behavior of T and additionally storing the so far read
labeled path in the state space. If some (s1, z1d1) ∈ QT × PathΣdirΣ at a σ1-
labeled node with z1d1σ1 6v xiy1 is reached, then a labeled path that does not
have xiy1 as prefix is read and U switches to Ts1 . Otherwise, a state (s2, z2d2) ∈
QT × PathΣ at a σ2-labeled node with xiy1 = z2d2σ2 is reached, from then on
U continues differently than Ts2 . Recall, then t is of the form tx · ty1 · t̃. Let s
denote the state that T reaches at the node uv1v2 ∈ domt′ in a computation
on t′ which is of the form tx · ty1 · ty2 · t̃. Then, U continues to read from the
node uv1 ∈ domt and simulates the computation of Ts on t̃. In the process, U
follows the unique path in t̃ that Ts chooses to read to produce output that is
mapped to xiy1dy2, i.e., output that is mapped to the path uv1v2 in t′. Assume
that uv1v2w is the path that is read in t′ in order to produce output mapped
to xiy1dy2 in t′, i.e., ||outT (t′[:uv1v2w], uv1v2)|| = ||xiy1dy2||. When U reaches
uv1w in t, then U produces an output tree to compatible to a labeled path o,
where o is chosen as described above. Note, then ||outU (t[:uv1w], uv1)|| = ||xiy1||.
After producing to, the transducer U switches to Tsk at the kth child of uv1w
in t, if sk is the state that T would be in when T reads the node uv1v2wk in
t′. Such a transducer U realizes the above described uniformization. Note that
γ ∈ LPLU (R, l), because the behavior of U only differs from T after reading
xiy1, and since γ ≤ l, we have ||γ|| < ||xiy1||.

For the second part, we now show value(LPLU (R, l)) < value(LPLT (R, l)).
We first remark, that if π ∈ LPLU (R, l) with xiy1 6v π, then also π ∈ LPLT (R, l),
because on paths that do not have xiy1 as prefix, U works like T . Also, if
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π ∈ LPLU (R, l) with π v xiy1, then π ∈ LPLT (R, l), because for the first
||xiy1|| computation steps, U works like T . Otherwise, if π ∈ LPLU (R, l)
with xiy1d v z, let π be of the form xiy1dz for some z ∈ PathΣ and let
path(z) = w. We show xiy1dy2jz ∈ LPLT (R, l). Consider an input tree
t′ ∈ T xiy1dy2jzΣ that is obtained from a tree t ∈ T xiy1dzΣ by inserting ty2 .
Then, from the construction of U follows that T reads xiy1dy2jz in t′. Since
xiy1dz ∈ LPLU (R, l), we know less then l output symbols have been produced
while reading the path uv1w in t, i.e., ||outU (t[:uv1w], u)|| < l. Moreover, it
follows from the construction of U that if ||outU (t[:uv1w], u)|| < l, then also
||outT (t′[:uv1v2w], u)|| < l, because by assumption l ≤ ||x|| and by construction
outT (t′[:uv1v2w], u) = outU (t[:uv1w], u) as long as ||outT (t′[:uv1v2w], u)|| ≤ ||x||. We
can conclude that xiy1dy2jz ∈ LPLT (R, l) if Rxiy1dy2jz is not uniformizable by
a path-recognizable function. Since xiy1dz ∈ LPLU (R, l), we know Rxiy1dz is
not uniformizable by a path-recognizable function. Towards a contradiction,
assume Rxiy1dy2jz is uniformizable by a path-recognizable function. Then, from
a uniformizer for Rxiy1dy2jz that realizes a path-recognizable function, we can
easily obtain a uniformizer for Rxiy1dz that realizes a path-recognizable function,
because Py1dy2j = Py1d. This is a contradiction to xiy1dz ∈ LPLU (R, l).

Altogether, for each labeled path π ∈ LPLU (R, l), there is either π ∈
LPLT (R, l) if π 6v xiy1 or π v xiy1, or xiy1dy2jz ∈ LPLT (R, l) if π is
of the form xiy1dz for some z ∈ PathΣ. That means, value(LPLU (R, l)) ≤
value(LPLT (R, l)). However, by assumption there is some z ∈ PathΣ such that
xiy1dy2jz ∈ LPLT (R, l) and by construction we obtain xiy1dz ∈ LPLU (R, l).
Thus, value(LPLU (R, l)) < value(LPLT (R, l)). This is a contradiction to T
being a uniformizer for R with γ ∈ LPLT (R, l) that has minimal complexity
w.r.t. l compared to every other uniformizer U for R with γ ∈ LPLU (R, l). �

Now that we have completed all preparations, we present a decision pro-
cedure for the case of arbitrary delay. Therefore, we consider a similar safety
game as in the previous section on uniformization with bounded output delay.
We only have to make one adaption to the game graph. Let K be as in Remark
10, and let G2K

A be defined as G2K
A from Section 3.1 with the following modifi-

cation. From each vertex (q, π) ∈ VOut we add a move that allows Out to stay
in this vertex if Rπq can be uniformized by a path-recognizable function. These
changes to the game graph can be made effectively, because Theorem 9 implies
that it is decidable whether there exists a corresponding uniformization by a
path-recognizable function. Using Lemma 13, we see (in the proof of the lemma
below) that it suffices to explicitly model situations in which the output delay
is at most 2K.

Lemma 14 R has a uniformization by a D↓TT if, and only if, Out has a win-
ning strategy in the safety game G2K

A .

Proof. Assume that Out has a winning strategy in G2K
A , then there also exists a

positional winning strategy for Out. To construct a D↓TT T that uniformizes
R, we proceed as presented in the proof of Lemma 6 with one addition. We
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construct for each (q, π) ∈ VOut such that Rπq can be uniformized by a path-
recognizable function a D↓TT T πq that uniformizes Rπq . In T we switch to T πq
at the respective states.

For the other direction, assume that R is uniformizable by a D↓TT. Again,
the proof is similar to the proof of Lemma 7. We show by induction on the
number of moves played by Out that the strategy in G2K

A can be chosen such
that in every play according to the strategy the following induction hypothesis
is satisfied. Let (q, π) denote a vertex of Out that is reached after a sequence
of moves in a play. W.l.o.g., we make the assumption that in this sequence
until now no vertex of Out was reached that has a self-loop. If a vertex with
self-loop was reached, then Out can stay in this vertex and wins. We claim that
there is some l ≤ K such that π can be split into xiyjf for some x, y ∈ PathΣ,
i, j ∈ dirΣ and f ∈ Σ with ||x|| = l and there exists a D↓TT T that uniformizes
Rxq such that the following holds: xiy ∈ LPLT (Rxq , l) if ||xiy|| ≥ 1, and for every
D↓TT U that uniformizes Rxq with x ∈ LPLU (Rxq , l) holds value(LPLT (Rxq , l)) ≤
value(LPLU (Rxq , l)).

In words, if in a play (q, π) ∈ VOut is reached, then there exists a factorization
of π into xiyjf such that there is a uniformizer T of Rxq with xiy as lookahead-
path and T has minimal complexity w.r.t. ||x|| compared to every uniformizer
of Rxq that has x as lookahead-path.

Note, we allow to choose x or y resp. x and y as ε, then we identify xiyjf with
yjf or xif resp. f . First, we show that the induction hypothesis is true at the
first reached vertex of Out in a play. Such a vertex is of the form (q0, f) ∈ VOut
for some f ∈ Σ. For l = 0, i.e., x = ε and y = ε, the induction hypothesis
can be satisfied. Since R is uniformizable, there exists a D↓TT T with minimal
complexity w.r.t. limit 0 that uniformizes Rεq0 = R.

Now we define the strategy. Assume the play is in a vertex (q, π) ∈ VOut and
the induction hypothesis is true for some l ≤ K and π can be split accordingly
into xiyjf with ||x|| = l and let T by a uniformizer that satisfies the claim.
To define the next move of Out, we consider the computation of T on some
t ∈ T xiyjfΣ and check whether the output produced while reading xiyjf exceeds
the limit l. Note, the induction hypothesis states that xiy ∈ LPLT (Rxq , l), which
means the output produced while reading xiy does not exceed the limit l.

If ||T (t[◦/path(xiy)j] · f)||path(x) ≥ l, that is, T produces at least l out-
put symbols while reading xiyjf , then the strategy defines output moves. We
pick an arbitrary z ∈ outT (t[◦/path(xiy)j] · f, path(x)), then Out makes l out-
put moves according to the prefix of length l of z. Let o denote this pre-
fix. Note that o is the greatest common prefix of every labeled path from
outT (t[◦/path(xiy)j] · f, path(x)). This leads to a vertex (q′, yjf) ∈ VOut with
A : q

x⊗o−−→i q
′. Since T is a uniformizer for Rxq that reads xiyjf and τxi,o(q) = q′,

there exists also a uniformizer for Ryjfq′ . Moreover, from the induction hypoth-
esis follows ||outT (t[◦/path(xiy)j], path(x))|| < l. This implies that there exists
a uniformizer for Ryjfq′ such that yif is a lookahead-path of this uniformizer
w.r.t. limit ||yif ||. Let T ′ denote such a uniformizer that has minimal com-
plexity w.r.t. ||yjf || compared to every uniformizer of Ryjfq′ that also has yif as

30



lookahead-path. For (q′, yjf) ∈ VOut, the induction hypothesis is then satisfied
by choosing a new limit l = ||yjf || and T ′ as described.

Otherwise, if ||T (t[◦/path(xiy)j] · f)||path(x) < l, that is, T produces at less
than l output symbols while reading xiyjf , we distinguish two cases. For the
first case assume ||π|| ≤ 2K, then Out delays and picks direction d chosen as
follows. Since xiy ∈ LPLT (Rxq , l) and ||outT (t[◦/path(xiy)j] · f, path(x))|| < l,
it follows that for every s ∈ T xiyjfΣ there is a configuration c = (s, s′, ϕ) of
T reachable such that there is u ∈ Ds′ with ϕ(u) = path(xiyjf) and u v
ϕ(u). Then, there exists a configuration c′ = (s, s′′, ϕ′) with c→T c′ such that
there is u′ ∈ Ds′′ with u v u′ v path(xiyjf) and ϕ′(u′) = path(xiyif)d for
some direction d. Out moves to (q, xiyjfd). Then, the next reached vertex of
Out is of the form (q, xiyjfdg) for some g ∈ Σ. The induction hypothesis is
satisfied for the same limit ||x|| and T as before: Clearly, we obtain xiyjf ∈
LPLT (Rxq , l), because ||outT (t[◦/path(xiy)j] · f, path(x))|| < l. Also, as before,
T has minimal complexity w.r.t. ||x|| compared to every uniformizer that also
has x as lookahead-path.

For the second case assume ||π|| = 2K + 1. Since l is at most K, ||y|| ≥
K. By induction hypothesis, we are guaranteed that T is a uniformizer for
Rxq with minimal complexity w.r.t. l compared to every uniformizer that also
has x as lookahead-path. Together with Lemma 13, this implies that xiyjf /∈
LPLT (Rxq , l), because the length of a path from LPLT (Rxq , l) is bounded by
K + l < 2K + 1. However, since T uniformizes Rxq and reads xiyjf this means
that Rxiyjfq is uniformizable by a path-recognizable function. Consequently, the
vertex (q, π) ∈ VOut has a self-loop and Out stays in this vertex from then on.

The strategy is winning because it ensures that Out can always make a move.
�

As a consequence of Lemma 14 and the fact that a winning strategy for Out
in G2K

A can effectively be computed we immediately obtain our main result.

Theorem 15 It is decidable whether a D↓TA-recognizable relation with total
domain has a uniformization by a deterministic top-down tree transducer.

As mentioned in the beginning, the presented results are also valid for D↓TA-
recognizable relations with D↓TA-recognizable domain in the sense that a ↓TT
that realizes a uniformization of a relation may behave arbitrarily on trees that
are not part of the domain. The presented constructions have to be adapted
such that In, given a D↓TA for the domain, also keeps track of the state in the
input tree in order to play only correct input symbols.

3.3 Input validation
In the former section, we assumed that a top-down tree transducer that im-
plements a uniformization of a relation is only given valid input trees. In this
section we consider the case that a top-down transducer also has to validate the
correctness of a given input tree.

31



We will see that in this case it can be necessary that a transducer takes
divergent paths for input and output. The following example shows that there
exists a D↓TA-recognizable relation with D↓TA-recognizable domain that can
be uniformized by a D↓TT, but every such D↓TT has a reachable configuration
(t, t′, ϕ) such that ϕ(u) 6v u and u 6v ϕ(u) for some node u.

Example 16 Let Σ be given by Σ2 = {f} and Σ0 = {a, b}. We consider the
relation R1 ⊆ TΣ×TΣ defined by {

(
f(b, t), f(t′, b)

)
| ¬∃u ∈ domt : val t(u) = b}.

Clearly, both R1 and dom(R1) are D↓TA-recognizable. One way to uniformize
R1 is by swapping the left and right subtree of the root and verify the required
properties, as done by the following D↓TT T = ({q0, q1, q2},Σ,Σ, q0,∆) with
∆ =

{ q0(f(x1, x2))→ f(q1(x2), q2(x1)), q1(a)→ b,

q1(f(x1, x2))→ f(q1(x1), q1(x2)), q2(b)→ b }.
However, there exists no D↓TT T ′ that uniformizes R1 such that the read input
sequence and the produced output are on the same path. Intuitively, a D↓TT
T that uniformizes R1 must read the whole right subtree of an input tree f(b, t)
in order to verify that there is no occurrence of b. If an f in t is read and no
output is produced, a D↓TT can either continue to read left or right, but cannot
verify both subtrees. Therefore, in order to verify t, a D↓TT has to produce an
output symbol at each read inner node which results in an output tree of the
same size. Assume such a D↓TT T ′ exists, then for an initial state q0 there is
a transition of the form q0(f(x1, x2)) → f(q1(x1), q2(x2)). It follows that T ′q2
must induce the relation {(t, b) | t ∈ TΣ ∧ ¬∃u ∈ domt : val t(u) = b}. The
only output that T ′q2 can produce is exactly one b. Thus, there is a transition
with left-hand side q2(f(x1, x2)) that has one of the following right-hand sides:
b, q3(x1), or q3(x2). No matter which right-hand side is chosen, dom(R(T ′q2))
must also contain trees with occurrences of b. /

It follows directly from the above example that the presented decision pro-
cedure is invalid if the domain of a considered relation is not total. However, if
we restrict ourselves to uniformizations such that a D↓TT only contains rules
of the form q(f(x1, . . . , xi))→ g(q1(xj1), . . . , qn(xjn)), where g ∈ Γn is a single
symbol i.e., read input symbol and correspondingly produced output are always
on the same tree level, it is possible to adapt the presented decision procedure
from Section 3.1. Recall the definition of bounded delay, this kind of D↓TTs are
referred to as D↓TTs without delay.

Theorem 17 It is decidable whether a D↓TA-recognizable relation with D↓TA-
recognizable domain has a uniformization by a deterministic top-down tree trans-
ducer without delay.

For this purpose, we can change the game graph in the following way. Let A
be a D↓TA for a relation and B be a D↓TA for its domain. The main difference
to the previous section is that we have to model that input and output can be
on divergent paths.
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Regarding the moves of In, the vertices track which B-state is reached on
the played input sequence. Regarding the moves of Out, we distinguish two
cases. If the played input sequence and the correspondingly produced output
sequence are on the same path, then – as before – the vertices track which A-
state is reached on the combination of the played input and produced output
sequence. Otherwise, if the played input sequence and the correspondingly
produced output sequence are on divergent paths, then the vertices track which
A-states can be reached on the combination of each possible input sequence
(that shares the same path as the produced output sequence) together with the
produced output sequence.

The move constraints for In are chosen such that it is guaranteed that the
played input sequence is valid. The move constraints for Out are chosen such
that it is guaranteed that the combination of the played input sequence together
with her produced output sequence resp. the combination of each possible input
sequence together with her produced output sequence is valid. Details for this
construction can be found in [18].

4 Conclusion
In this paper, we considered the synthesis of deterministic top-down tree trans-
ducers from tree automatic specifications. We have shown that it is decidable
whether a deterministic top-down specification can be realized by a top-down
tree transducer under the restriction that the transducer is not required to val-
idate the input, meaning that a transducer implementing a uniformization can
behave arbitrarily on invalid inputs. If uniformization is possible, our decision
procedure yields a top-down tree transducer that realizes the specification.

We have seen that the presented decision procedure concerning uniformiza-
tion without input validation cannot be transferred directly to decide the prob-
lem corresponding to the classical uniformization question (with input valida-
tion). The reason for this is that in the employed transducer model it is not
possible to verify the input without producing output.

In future work, we would like to develop methods for solving the general case
of nondeterministic specifications. Furthermore, we would also like to consider
nondeterministic top-down tree transducers as specification formalism. For this
class of specifications, the synthesis problem in its full generality is undecid-
able, because it already is for the restriction to words (synthesis of sequential
transducers from rational relations [6]). We would like to identify interesting
decidable restrictions of this problem.
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